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1 INTRODUCTION

The theory of extensions of symmetric and isometric operators in Hilbert spaces
was initiated by J. von Neumann in the early 1930s. This theory has numerous ap-
plications to different problems of mathematical physics and analysis, in particular
perturbation theory of operators as well as classical problems of analysis like the
moment problem. The literature devoted to such applications is very extensive (see
Kreı̆n (1946), Albeverio & Kurasov (1999), Reed & Simon (1975), Pavlov (1987),
Kostenko & Malamud (2010) and references therein).
In the paper of Kreı̆n (1947) it was proved that for a densely defined nonnegative
operator A in a Hilbert space there are two extremal extensions of A, the Friedrichs
(hard) extension AF and the Kreı̆n-von Neumann (soft) extension AK , such that ev-
ery nonnegative selfadjoint extension Ã of A can be characterized by the following
two inequalities:

(AF + a)−1 ≤ (Ã+ a)−1 ≤ (AK + a)−1, a > 0.

Later the study of nonnegative selfadjoint extensions of A ≥ 0 was generalized to
the case of nondensely defined operators A ≥ 0 by Ando & Nishio (1970), as well
as to the case of linear relations (multivalued linear operators)A ≥ 0 by Coddington
& de Snoo (1978). The extension theory of unbounded symmetric Hilbert space op-
erators and related resolvent formulas originating also from Kreı̆n (1944, 1946), see
also e.g. Langer & Textorius (1977), was generalized to the spaces with indefinite
inner products in the well-known series of papers by H. Langer and M.G. Kreı̆n,
see e.g. Kreı̆n & Langer (1971), and all of this has been further investigated, devel-
oped, and extensively applied in various other areas of mathematics and physics by
numerous other researchers.
An other approach to the investigation of selfadjoint extensions of symmetric opera-
tors is based on the notion of boundary triplets. In many cases, the boundary triplets’
method has appeared to offer a more convenient tool than the classical methods of
extension theory, for instance, when treating various spectral and scattering proper-
ties of differential operators. In fact, initially this method was systematically stud-
ied and elaborated by J.W. Calkin in his 1937 Harvard doctoral dissertation and then
published in the paper Calkin (1939), as a generalization of the method of boundary
conditions used in the theory of Sturm-Liouville problems to the case of arbitrary
symmetric operators. However, the method was not widespread at that time, appar-
ently, because of the complexity of the language and the abstract nature of the work.
Later on the boundary value space technique has been extensively developed in the
works of Ukrainian mathematicians (F. Rofe-Beketov, M. Gorbachuk, V. Lyantse,
A. Kochubei, O. Storozh, M. Malamud, V. Derkach, and others, see Albeverio &
Kurasov (1999); Gorbachuk & Gorbachuk (1990); Derkach & Malamud (1991);
Malamud (1992) and the bibliography therein).
Another important concept in the boundary triplets’ theory is the so-called Weyl
function of a symmetric operator, which is a natural generalization of the classical
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Weyl-Titchmarsh m-function appearing in the Sturm-Liouville theory. The defi-
nition of abstract Weyl functions associated with boundary triplets was proposed
by V. Derkach and M. Malamud. In a series of works (see Derkach & Malamud
(1991); Malamud (1992) and references therein), these authors investigated proper-
ties of the Weyl function and applied them, for instance, to the spectral analysis of
selfadjoint extensions of symmetric operators. More recently, the theory of bound-
ary triplet has been further developed in the serious of papers (see Derkach et. al.
(2006), Derkach et. al. (2009), and Derkach et. al. (2012)) where so-called Nevan-
linna families are appearing as the associated Weyl functions.
It is well known that the extension theory of symmetric operators can be success-
fully applied not only to boundary value problems and singularly perturbed opera-
tors, but also to various classical problems like moment problems and Nevanlinna–
Pick type interpolation problems. The main role in this approach to such classical
problems is played by the Kreı̆n’s formula for generalized resolvents of a symmetric
operator A in a Hilbert space H (see Kreı̆n (1946)). Another proof of this formula
which is based on the notion of the boundary relation and the coupling has been
developed in Derkach et. al. (2009). Closely related to the notion of generalized
resolvents is the concept of L-resolvent for a subspace L of H, the compressed re-
solvent PL(Ã−λ)−1 � L either of an exit space or a canonical selfadjoint extension
Ã ofA is called the L-resolvent ofA. The set of all L-resolvents ofAwas described
in Kreı̆n (1946) via the formula

PL(Ã− λ)−1 � L =
(
W11(λ)τ(λ) +W12(λ)

)(
W21(λ)τ(λ) +W22(λ)

)−1

where WA,L(λ) =
(
Wij(λ)

)2
i,j=1

is the so-called L - resolvent matrix of A, and the

parameter τ ranges over the class R̃L of Nevanlinna families with values in B(L).
From the above resolvent formula one obtains also a description of the set of all
L - spectral functions PLEÃ(·) � L by means of Cauchy’s formula and in appli-
cations to classical problem, like the Hamburger moment problem, this leads to a
description of all the solutions. The theory of L-resolvent matrices of an opera-
tor A has been developed by M.G. Kreı̆n and Sh. Saakyan (Kreı̆n (1946), Kreı̆n &
Saakyan (1966)). Further developments as well as their connections with the theory
of boundary triples and characteristic functions of nonselfadjoint operators can be
found in Derkach & Malamud (1991, 1995).
A description of generalized resolvents of a standard symmetric operator in a Pon-
tryagin space (i.e. with nondegenerate defect subspaces) was obtained in Kreı̆n &
Langer (1971) and in Dijksma et. al. (1990). The notions of a boundary triplet and
the corresponding Weyl function were generalized to the case of a symmetric oper-
ator in a Pontryagin space by Derkach (1995). The theory of L-resolvent matrices
of a symmetric operator in a Pontryagin space setting was developed in Derkach
(1999).
Extension theory of isometric operators have been applied to interpolation problems
in Schur classes by V. Adamjan, D. Arov and M.G. Kreı̆n in Adamjan et al. (1968),
Arov (1993). In this case the main role is played by the description of scattering
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matrices of unitary extensions of an isometric operator. Such a description was
obtained by Arov & Grossman (1992) as a parallel version of the M.G. Kreı̆n’s
formula for generalized resolvents of symmetric operators.
Malamud & Mogilevskii (2003) developed the theory of boundary triplets for iso-
metric operators. They introduced the notion of the Weyl function of an isometric
operator and applied it to the theory of generalized resolvents of isometric opera-
tors.Then in Malamud & Mogilevskii (2005) the theory of L-resolvent matrices of
an isometric operator was elaborated.
As was indicated in Adamjan et. al. (1971) the Nehari-Takagi problem can be re-
duced to an extension problem for an isometric operator in a Pontryagin space. A
description of generalized coresolvents and L-resolvents of a standard isometric op-
erator (whose domain is a nondegenerate subspace) was obtained in Langer (1971),
Langer & Sorjonen (1974) and in Dijksma et. al. (1990). For a nonstandard isomet-
ric operator a description of generalized coresolvents was obtained in Nitz (2000a),
Nitz (2000b). This description turned out to be quite complicated, since such an
operator admits multivalued unitary extensions (unitary relations).
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2 KREIN AND PONTRYAGIN SPACES

2.1 Definitions and general facts

We start with some basic definitions related to Kreı̆n spaces (see Azizov & Iokhvi-
dov (1989) and Bognar (1974)).

A Kreı̆n space H is a topological complex linear space H equipped with a scalar
product [·, ·], such that for some continuous linear operator J in the space H with
the property J2 = J , the new scalar product (·, ·)J := [J ·, ·] turns H into a Hilbert
space. It follows, that the topology of the Hilbert space is equivalent to the topology
of the Kreı̆n space. The operator J is called a fundamental symmetry or a signature
operator. It is easy to see, that J is selfadjoint with respect to both scalar products.
A Kreı̆n space with fundamental symmetry J is denoted by (H, J).

A vector h ∈ H is called positive, neutral or negative if [h, h] > 0, [h, h] = 0 or
[h, h] < 0, respectively. A subspace of a Kreı̆n space L is called positive, neutral or
negative if every nonzero vector h ∈ L is positive, neutral or negative, respectively.
Below some standard notations are given:

x[⊥]y : ⇔ [x, y] = 0;

L1 u L2 := L1 + L2 if L1 ∩ L2 = 0;

L[⊥] := {x ∈ H : for all y ∈ L, x[⊥]y};
L1[u]L2 := L1 + L2 if L1 ∩ L2 = 0,L1[⊥]L2;

L1[−]L2 := L2 ∩ L
[⊥]
1 if L1 ⊂ L2.

A regular subspace of a Kreı̆n space means a closed subspace L ⊂ H which is a
Kreı̆n space in the scalar product of H. A subspace L ⊂ H is regular if and only if
L[+]L[⊥] = H.

Every closed subspace L of a Kreı̆n spaceH admits a decomposition of the form

L = L+[u]L−[u]L0,

where L+,L−,L0 are positive, negative, and neutral closed subspaces, respectively.
The subspace L0 is uniquely defined and can be found by the formula L0 = L∩L[⊥].
It is called the isotropic part of L. In general, the subspaces L± are not unique but
their dimensions do not depend on the choice and are called the signature indices of
L, and are denoted by κ0(L) = dimL0, κ±(L) = dimL±. The whole Kreı̆n space
H has no isotropic part, i.e. κ0(H) = 0, so it has a decompositionH = H+[u]H−,
which is called a fundamental decomposition. The number κ−(H) is often called
the number of negative squares of a Kreı̆n space H. A Kreı̆n space H is called a
Pontryagin space if κ−(H) < ∞. If (H, J) is a Kreı̆n space then κ±(H) = ν±(J);
the negative and the positive indices of inertia of J .
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2.2 Linear relations in Pontryagin spaces

We denote by B(H1,H2) the set of all continuous and everywhere defined linear
operators from the Pontryagin spaceH1 to the Pontryagin spaceH2; we write B(H)
instead of B(H,H). The graph of a linear operator T ∈ B(H1,H2) is a closed
subspace ofH1 ×H2, defined by

grT =

{[
x
Tx

]
: x ∈ H1

}
.

A linear relation (l.r.) T fromH1 toH2 is a linear subspace inH1×H2. If the linear
operator T is identified with its graph, then the set B(H1,H2) of linear bounded
operators from H1 to H2 is contained in the set of linear relations from H1 to H2.
In what follows, we interpret the linear relation T : H1 → H2 as a multivalued
linear mapping fromH1 to H2. If H := H1 = H2 we say that T is a linear relation
inH.
For the linear relation T : H1 → H2, we denote by domT , ker T , ranT , and mulT
the domain, the kernel, the range, and the multivalued part of T , respectively. The
inverse relation T−1 is a linear relation fromH2 toH1 defined by the equality

T−1 =

{[
f ′

f

]
:

[
f
f ′

]
∈ T

}
.

The operator sum T + S of two linear relations T and S is defined by

T + S =

{[
f

g + h

]
:

[
f
g

]
∈ T,

[
f
h

]
∈ S

}
.

Consider two Pontryagin spaces (H1, jH1) and (H2, jH2) and a linear relation T

from H1 to H2. Then the adjoint linear relation T [∗] consists of pairs
[
g2
g1

]
∈ H2 ×

H1 such that

[f2, g2]H2 = [f1, g1]H1 , for all
[
f1
f2

]
∈ T.

If T ∗ is the l.r. adjoint to T considered as a l.r. from the Hilbert space H1 to the
Hilbert spaceH2, then T [∗] = jH1T

∗jH2 .

Definition 2.1. A linear relation T from a Pontryagin space (H1, jH1) to a Pontrya-

gin space (H2, jH2) is called isometric, if for all
[
ϕ
ϕ′

]
∈ T the equality

[ϕ′, ϕ′]H2 = [ϕ, ϕ]H1 (2.1)

holds. Moreover, T is called contractive (expansive), if equality (2.1) is replaced by
an inequality with the sign≤ (by≥, respectively). It follows from (2.1) that a linear
relation T is isometric if and only if T−1 ⊂ T [∗]. A linear relation from (H1, jH1)
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to (H2, jH2) is called unitary, if T−1 = T [∗].
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3 UNITARY COLLIGATIONS, SCATTERING MATRI-
CES, AND GENERALIZED RESOLVENTS

We recall the basic notions of the theory of unitary colligations (see Alpay et. al.
(1997), Brodskii (1978)). Let H be a Pontryagin space with a negative index κ,

let N2 and N1 be Hilbert spaces, and let U =

(
T F
G H

)
be a unitary operator

from H ⊕ N2 to H ⊕ N1. Then the quadruple ∆ = (H,N2,N1;U) is called a
unitary colligation. The spaces H,N2,N1 are called, respectively, the state space,
the input channel space, and the output channel space, and the operator U is called
the connecting operator of the colligation ∆.
The colligation ∆ is called simple, if there exists no subspace in the spaceH reduc-
ing U . The operator function

Θ(λ) = H + λG(I − λT )−1F : N2 → N1 (λ−1 ∈ ρ(T ))

is called the characteristic function of a colligation ∆ or the scattering matrix of
the unitary operator U relative to the channel spaces N2 and N1 in the case where
N2,N1,H are Hilbert spaces; see Arov & Grossman (1992). The characteristic
function characterizes a simple unitary colligation up to unitary equivalence. The
characteristic function can be also expressed as follows.

Proposition 3.1. (Derkach (2001)) Let ∆ = (H,N2,N1;T, F,G,H) be a unitary
colligation and Θ(·) be the characteristic function of this colligation. Then

Θ(λ) = PN1(I − λUPH)−1U � N2 = PN1U(I − λPHU)−1 � N2,

where PH and PNi
are orthoprojections from H ⊕ Ni onto H and Ni (i = 1, 2),

respectively.

In the sequel, we need the Schur class S and the generalized Schur class Sκ of
functions. The definition reads as follows (see Alpay et. al. (1997)).

Definition 3.2. A function s(λ) defined and holomorphic in a domain hs ⊂ D
belongs to the class Sκ(N1,N2), if the kernel

Kµ(λ) =
1− s(µ)∗s(λ)

1− λµ

has κ negative squares, i.e. for all λ1, ..., λn ∈ hs and u1, ..., un ∈ N1 the matrix
((Kλj(λi)ui, uj))

n
i,j=1 has at most κ negative eigenvalues and at least for one such

choice it has exactly κ negative eigenvalues.

In particular, an [N1,N2]-valued function s(·) belongs to the class S(N1,N2), if the
kernel Kµ(λ) is positive definite everywhere in D. As is known, the last condition
is equivalent to s(·) being holomorphic in D and ‖s(λ)‖ ≤ 1 for all λ ∈ D.
Since the colligation ∆ is unitary than Θ(·) ∈ Sκ(N2,N1).
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Definition 3.3. (see Langer (1971)) The operator function Rλ, holomorphic in a
neighborhoodO of a point λ, is called a generalized resolvent of an isometric oper-
ator V : H → H, if there exist a Pontryagin space H̃ ⊃ H and a unitary extension
Ṽ : H̃ → H̃ of the operator V such that λ ∈ ρ(Ṽ ) and the equality

Rλ = PH
(
Ṽ − λ

)−1
� H, λ ∈ ρ(Ṽ ) ∩ O

holds; here PH stands for the orthoprojector from H̃ ontoH.
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4 BOUNDARY TRIPLETS IN A PONTYAGIN SPACE

In the case where H is a Hilbert space, the definition of the boundary triplet for an
isometric operator was introduced in Malamud & Mogilevskii (2003).

4.1 Boundary triplets and extensions of an isometric op-
erator in a Pontryagin space

LetH be a Pontryagin space with negative index κ, and let the operator V : H → H
be an isometry in H. By N1 and N2, we denote two auxiliary Hilbert spaces with
inner products (·, ·)N1 and (·, ·)N2 , respectively.

Definition 4.1. The collection Π = {N1 ⊕N2,Γ1,Γ2} is called a boundary triplet
of an isometric operator V , if

1) the following Green’s generalized identity holds:

[f ′, g′]H − [f, g]H = (Γ1f̂ ,Γ1ĝ)N1 − (Γ2f̂ ,Γ2ĝ)N2 ,

where f̂ =

[
f
f ′

]
, ĝ =

[
g
g′

]
∈ V −[∗];

2) the mapping Γ = (Γ1,Γ2)
T : V −[∗] → N1 ⊕N2 is surjective.

For an isometric operator, it is convenient to define the defect subspace Nλ(V ) as
follows:

Nλ(V ) := ker
(
I − λV [∗]) =

{
fλ :

[
fλ
λfλ

]
∈ V −[∗]

}
, λ ∈ C.

We also set

N̂λ(V ) :=

{[
fλ
λfλ

]
: fλ ∈ Nλ(V )

}
.

Let θ be a linear relation from N2 to N1. We define the extension Vθ of the operator
V by the equality

Vθ =

{
f̂ ∈ V −[∗] :

[
Γ2f̂

Γ1f̂

]
∈ θ
}
.

The extension Vθ is, generally speaking, a linear relation inH. Observe, that

V =
{
f̂ ∈ V −[∗] : Γ1f̂ = 0 and Γ2f̂ = 0

}
.

We define two extensions V1 and V2 of the operator V :

Vi =
{
f̂ ∈ V −[∗] : Γif̂ = 0

}
, i = 1, 2. (4.1)
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The extension V1 is contractive in H, whereas V2 is an expansive relation in H.
As is known (Azizov & Iokhvidov (1989), p.186), the spectrum of the contractive
extension V1 contains at most κ points outside the unit disk De := C\D, and the
spectrum of the expanding extension V2 contains at most κ points inside the unit
disk D.
Now define two sets of points:

Λ1 = {λ ∈ De : N̂λ(V ) ∩ V1 6= {0}} = σp(V1) ∩ De;

Λ2 = {λ ∈ D : N̂λ(V ) ∩ V2 6= {0}} = σp(V2) ∩ D.

Thus, each of the sets Λ1 and Λ2 contains at most κ points, and the sets

D1 := De \ Λ1 and D2 := D \ Λ2 (4.2)

are contained in the sets of regular points of these extensions.
The following Theorem taken from Publication III gives a connection between ex-
tensions of V and parameters θ.

Theorem 4.2. Let the collection Π = {N1 ⊕N2,Γ1,Γ2} be the boundary triplet
for V , let θ be a linear relation from N2 to N1, and let Vθ be the corresponding
extension of the operator V . Then

(1) the inclusion Vθ1 ⊂ Vθ2 is equivalent to the inclusion θ1 ⊂ θ2;

(2) Vθ−∗ = V
−[∗]
θ ;

(3) Vθ is a unitary extension of the operator V , iff θ is the graph of a unitary
operator from N2 to N1;

(4) Vθ is an isometric extension of the operator V , iff θ is the graph f an isometric
operator from N2 to N1;

(5) Vθ is a coisometric extension of the operator V , iff θ is the graph of a coiso-
metric operator from N2 to N1;

(6) Vθ is a contraction, iff θ is a contaction;

(7) Vθ is an expansion, iff θ is an expansion.

Note that, in assertions (3)–(6), the extension Vθ can be a linear relation with non-
trivial multivalued part, whereas θ is the graph of an operator.

4.2 γ-fields and Weyl functions

The Weyl function of an isometric operator V allows one to describe the analytic
properties of extensions of the operator V . We generalize the notion of the Weyl
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function of an isometric operator V in a Hilbert space, which was introduced in
Malamud & Mogilevskii (2003), for the case of the isometric operator V in a Pon-
tryagin spaceH with negative index κ.
Let Π = {N1 ⊕N2,Γ1,Γ2} be a boundary triplet for V , and let V1 and V2 be the
extensions of the isometric operator V that were defined in (4.1). Then the mappings
Γj � N̂λ(V ) : N̂λ(V ) → Nj j = 1, 2, are bounded and boundedly invertible for
λ ∈ Dj , see (4.2).
In this case, the operator-functions

γj(λ) := π1γ̂j(λ) = π1

(
Γj � N̂λ(V )

)−1

are well defined and called γ-fields for the l.r. V −[∗].
By using γ-fields we can introduced two functions:

M1(λ) := Γ2γ̂1(λ), λ ∈ D1;

M2(λ) := Γ1γ̂2(λ), λ ∈ D2.

Observe, that the operator-function M2(·) belongs to the class Sκ(N2,N1).

Definition 4.3. Let D1 and D2 be as in (4.2). The operator-function defined by the
equality

M(λ) =

{
M1(λ), λ ∈ D1

M2(λ), λ ∈ D2
,

is called the Weyl function of the operator V : H → H corresponding to the
boundary triplet Π = {N1 ⊕N2,Γ1,Γ2}.
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5 SUMMARIES OF THE ARTICLES

I. Completion, extension, factorization, and lifting of operators

In this article extensions of a result due to Yu. L. Shmul’yan on completions of
nonnegative block operators are given. The extension of this fundamental result
allows us generalized some well-known results of M. G. Kreı̆n concerning the de-
scription of selfadjoint contractive extensions of a Hermitian contraction T1 as well
as the characterization of all nonnegative selfadjoint extensions Ã of a nonnegative
operator A via the operator inequalities AK ≤ Ã ≤ AF , where AK and AF are
the Kreı̆n-von Neumann extension and the Friedrichs extension of A.These gen-
eralizations concern the situation, where Ã is allowed to have a fixed number of
negative eigenvalues. Furthermore, these new results are applied to solve some lift-
ing problems for J-contractive operators in Hilbert, Pontryagin, and Kreı̆n spaces.
In addition, for instance a generalization of the well-known Douglas factorization
of Hilbert space operators is derived. In the last part of this paper some very re-
cent results concerning inequalities between semibounded selfadjoint relations and
their inverses play a central role; such results are needed to treat the ordering of
noncontractive selfadjoint operators under Cayley transforms properly.

II. Completion and extension of operators in Kreı̆n spaces

This paper continuous the research carried out in Paper I. It develops further the ap-
proach based on completion problems by offering its natural extension to the Kreı̆n
and Pontryagin space setting. This allows us to generalize further the original re-
sults of M.G. Kreı̆n about the description of selfadjoint contractive extension of a
hermitian contraction. This generalization concerns the situation, where the selfad-
joint operatorA and extensions Ã belong to a Kreı̆n space or a Pontryagin space and
their defect operators are allowed to have a fixed number of negative eigenvalues.
Also the result of Yu.L. Shmul’yan on completions of nonnegative block operators
is extended for block operators with a fixed number of negative eigenvalues in a
Kreı̆n space.

III. On boundary triplets and generalized resolvents of an isometric operators

in a Pontryagin space

In this paper the notions of boundary triplets and Weyl functions of an isometric
operator V in the Pontryagin space setting are investigated. The results contain for
instance a description of all proper extensions of the operator V and include a study
of spectral properties of the unitary extensions of V . Formulas for canonical and
generalized resolvents of the isometric operator V are established.
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IV. Description of scattering matrices of unitary extensions of isometric opera-

tors in a Pontryagin space

An analog for the Kreı̆n-Saakyan resolvent matrix theory is built in the setting of
Pontryagin spaces. In particular, a new definition of a resolvent matrix of an isomet-
ric operator V is given and an abstract version of the Cristoffel-Darboux identity,
known from the theory of orthogonal polynomials, is proven. By applying these re-
sults on resolvent matrices of an isometric operator V , a description of all scattering
matrices of the operator V is established.
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Abstract The well-known results of M. G. Kreı̆n concerning the description of self-
adjoint contractive extensions of a hermitian contraction T1 and the characterization of
all nonnegative selfadjoint extensions ˜A of a nonnegative operator A via the inequal-
ities AK ≤ ˜A ≤ AF , where AK and AF are the Kreı̆n–von Neumann extension and
the Friedrichs extension of A, are generalized to the situation, where ˜A is allowed to
have a fixed number of negative eigenvalues. These generalizations are shown to be
possible under a certain minimality condition on the negative index of the operators
I − T ∗

1 T1 and A, respectively; these conditions are automatically satisfied if T1 is
contractive or A is nonnegative, respectively. The approach developed in this paper
starts by establishing first a generalization of an old result due to Yu. L. Shmul’yan
on completions of nonnegative block operators. The extension of this fundamental
result allows us to prove analogs of the above mentioned results of M. G. Kreı̆n and, in
addition, to solve some related lifting problems for J -contractive operators in Hilbert,
Pontryagin and Kreı̆n spaces in a simple manner. Also some new factorization results
are derived, for instance, a generalization of the well-known Douglas factorization of
Hilbert space operators. In the final steps of the treatment some very recent results con-
cerning inequalities between semibounded selfadjoint relations and their inverses turn
out to be central in order to treat the ordering of non-contractive selfadjoint operators
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1 Introduction

Almost 70 years ago in his famous paper [47] M. G. Kreı̆n proved that for a densely
defined nonnegative operator A in a Hilbert space there are two extremal extensions
of A, the Friedrichs (hard) extension AF and the Kreı̆n–von Neumann (soft) extension
AK , such that every nonnegative selfadjoint extension ˜A of A can be characterized by
the following two inequalities:

(AF + a)−1 ≤ (˜A + a)−1 ≤ (AK + a)−1, a > 0.

To obtain such a description he used Cayley transforms of the form

T1 = (I − A)(I + A)−1T = (I − ˜A)(I + ˜A)−1,

to reduce the study of unbounded operators to the study of contractive selfadjoint
extensions T of a hermitian nondensely defined contraction T1. In the study of con-
tractive selfadjoint extensions of T1 he introduced a notion which is nowadays called
“the shortening of a bounded nonnegative operator H to a closed subspace N” of H
as the (unique) maximal element in the set

{ D ∈ [H] : 0 ≤ D ≤ H, ran D ⊂ N }, (1)

which is denoted by HN; cf. [3,4,57]. Here and in what follows the notation [H1,H2]
stands for the space of all bounded everywhere defined operators acting from H1 to
H2; if H = H1 = H2 then the shorter notation [H] = [H1,H2] is used. By means of
shortening of operators he proved the existence of a minimal and maximal contractive
extension Tm and TM of T1 and that T is a selfadjoint contractive extension of T1 if
and only if Tm ≤ T ≤ TM .

Later the study of nonnegative selfadjoint extensions of A ≥ 0 was generalized to
the case of nondensely defined operators A ≥ 0 by Ando and Nishio [5], as well as to
the case of linear relations (multivalued linear operators) A ≥ 0 by Coddington and
de Snoo [22]. Further studies followed this work ofM. G. Kreı̆n; the approach in terms
of “boundary conditions” to the extensions of a positive operator A was proposed by
Vishik [63] and Birman [16]; an exposition of this theory based on the investigation
of quadratic forms can be found from [2]. An approach to the extension theory of
symmetric operators based on abstract boundary conditions was initiated even earlier
by Calkin [21] under the name of reduction operators, and later, independently the
technique of boundary triplets was introduced to formalize the study of boundary value
problems in the framework of general operator theory; see [20,29,31,37,43,54]. Later
the extension theory of unbounded symmetric Hilbert space operators and related
resolvent formulas originating also from the work of Kreı̆n [45,46], see also e.g.
[52], was generalized to the spaces with indefinite inner products in the well-known
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series of papers by Langer and Kreı̆n, see e.g. [49,50], and all of this has been further
investigated, developed, and extensively applied in various other areas of mathematics
and physics by numerous other researchers.

In spite of the long time span, natural extensions of the original results of Kreı̆n
in [47] seem not to be available in the literature. Obviously the most closely related
result appears in Constantinescu and Gheondea [24], where for a given pair of a row
operator Tr = (T11, T12) ∈ [H1⊕H′

1,H2] and a columnoperator Tc = col (T11, T21) ∈
[H1,H2⊕H′

2] the problem for determining all possible operators ˜T ∈ [H1⊕H′
1,H2⊕

H′
2] acting from the Hilbert space H1 ⊕ H′

1 to the Hilbert space H2 ⊕ H′
2 such that

PH2
˜T = Tr , ˜T �H1 = Tc,

and such that the following negative index (number of negative eigenvalues) conditions
are satisfied

κ1 := ν−(I − ˜T ∗
˜T ) = ν−(I − T ∗

c Tc), κ2 := ν−(I − ˜T˜T ∗) = ν−(I − Tr T
∗
r ),

is considered. The problem was solved in [24, Theorem 5.1] under the condition
κ1, κ2 < ∞. In the literature cited therein appears also a reference to an unpub-
lished manuscript [53] by H. Langer and B. Textorius, where a similar problem for
a given bounded hermitian column operator T has been investigated; see [53, Theo-
rems 1.1, 2.8]1 and [24, Section 6]. However, in these papers the existence of possible
extremal extensions in the solution set in the spirit of [47], when it is nonempty, have
not been investigated. Also possible investigations of analogous results for unbounded
symmetric operatorswith a fixed negative index seem to be unavailable in the literature.

In this paper we study classes of “quasi-contractive” symmetric operators T1 with
ν−(I − T ∗

1 T1) < ∞ as well as “quasi-nonnegative” operators A with ν−(A) < ∞
and the existence and description of all possible selfadjoint extensions T and ˜A of
them which preserve the given negative indices ν−(I − T 2) = ν−(I − T ∗

1 T1) and
ν−(˜A) = ν−(A), and prove precise analogs of the above mentioned results of M.
G. Kreı̆n under a minimality condition on the negative indices ν−(I − T ∗

1 T1) and
ν−(A), respectively. It is an unexpected fact that when there is a solution then the
solution set still contains a minimal solution and a maximal solution which then
describe the whole solution set via two operator inequalities, just as in the original
paper of M. G. Kreı̆n. The approach developed in this paper differs from the approach
in [47]. In fact, technique based on nonnegative completions of operators appearing in
papers by Kolmanovich and Malamud [44] and Hassi et al. [39] will be successfully
generalized. In particular, we introduce a new class of completion problems for Hilbert
space operators, whose solutions evidently admit a wider scope of applications than
what is appearing in the present paper.

The starting point in our approach is to establish a generalization of an old result
due to Shmul’yan [59] on completions of nonnegative block operators where the result

1 After the Math ArXiv version of the present paper we inquired contents of that work from H. Langer who
then kindly provided us their initial work in [53].
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was applied for introducing so-called Hellinger operator integrals. Our extension of
this fundamental result is given in Sect. 2; see Theorem 1 (for the case κ < ∞) and
Theorem 2 (for the case κ = ∞). Obviously these two results, already in view of the
various consequences appearing in later sections, may be considered as being most
useful inventions in the present paper with further possible applications in problems
appearing also elsewhere (see e.g. [4,6,27,28,58]).

In this paperwewill extensively applyTheorem1. In Sect. 3 this result is specialized
to a class of block operators to characterize occurrence of a minimal negative index
for the so-called Schur complement, see Theorem 3. This result can be also viewed
as a factorization result and, in fact, it yields a generalization of the well-known
Douglas factorization of Hilbert space operators in [32], see Proposition 1, which is
completed by a generalization of Sylvester’s criterion on additivity of inertia on Schur
complements in Proposition 2. In Sect. 4, Theorem 1, or its special case Theorem 3,
is applied to solve lifting problems for J -contractive operators in Hilbert, Pontryagin
and Kreı̆n spaces in a new simple way, the most general version of which is formulated
in Theorem 4: this result was originally proved in Constantinescu and Gheondea [23,
Theorem2.3]with the aid of [13, Theorem5.3]; for special cases, see alsoDritschel and
Rovnyak [33,34]. In the Hilbert space case the problem has been solved in [12,25,62],
further proofs and facts can be found e.g. from [8,10,19,44,55].

Section5 contains the extension of the fundamental result of Kreı̆n in [47], see
Theorem 5, which characterizes the existence and gives a description of all selfadjoint
extensions T of a bounded symmetric operator T1 satisfying the following minimal
index condition ν−(I − T 2) = ν−(I − T 2

11) by means of two extreme extensions via
Tm ≤ T ≤ TM . In Sect. 6 selfadjoint extensions of unbounded symmetric operators,
and symmetric relations, are studied under a similar minimality condition on the
negative index ν−(A); the main result there is Theorem 8. It is a natural extension
of the corresponding result of Kreı̆n in [47]. The treatment here uses Cayley type
transforms and hence is analogous to that in [47]. However, the existence of two
extremal extensions in this setting and the validity of all the operator inequalities
appearing therein depend essentially on so-called “antitonicity results” proved only
very recently for semibounded selfadjoint relations in [15] concerning correctness of
the implication H1 ≤ H2 ⇒ H−1

1 ≥ H−1
2 in the case that H1 and H2 have some finite

negative spectra. In this section analogs of the so-called Kreı̆n’s uniqueness criterion
for the equality Tm = TM are also established.

2 A completion problem for block operators

By definition the modulus |C | of a closed operator C is the nonnegative selfadjoint
operator |C | = (C∗C)1/2. Every closed operator admits a polar decomposition C =
U |C |, where U is a (unique) partial isometry with the initial space ran |C | and the
final space ranC , cf. [42]. For a selfadjoint operator H = ∫

R
t dEt in a Hilbert space

H the partial isometry U can be identified with the signature operator, which can be
taken to be unitary: J = sign (H) = ∫

R
sign (t) dEt , in which case one should define

sign (t) = 1 if t ≥ 0 and otherwise sign (t) = −1.
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2.1 Completion to operator blocks with finite negative index

The following theorem solves a completion problem for a bounded incomplete block
operator A0 of the form

A0 =
(

A11 A12
A21 ∗

) (

H1
H2

)

→
(

H1
H2

)

(2)

in the Hilbert space H = H1 ⊕ H2.

Theorem 1 LetH = H1⊕H2 be an orthogonal decomposition of the Hilbert spaceH
and let A0 be an incomplete block operator of the form (2). Assume that A11 = A∗

11 and
A21 = A∗

12 are bounded, ν−(A11) = κ < ∞, where κ ∈ Z+, and let J = sign (A11)

be the (unitary) signature operator of A11. Then:

(1) There exists a completion A ∈ [H] of A0 with some operator A22 = A∗
22 ∈ [H2]

such that ν−(A) = ν−(A11) = κ if and only if

ran A12 ⊂ ran |A11|1/2. (3)

(2) If (3) is satisfied, then the operator S = |A11|[−1/2]A12, where |A11|[−1/2] denotes
the (generalized) Moore–Penrose inverse of |A11|1/2, is well defined and S ∈
[H2,H1]. Moreover, S∗ J S is the smallest operator in the solution set

A := {A22 = A∗
22 ∈ [H2] : A = (Ai j )

2
i, j=1 : ν−(A) = κ} (4)

and this solution set admits a description as the (semibounded) operator interval
given by

A = {A22 ∈ [H2] : A22 = S∗ J S + Y, Y = Y ∗ ≥ 0}.

Proof (i) Assume that there exists a completion A22 ∈ A. Let λκ ≤ λκ−1 ≤ · · · ≤
λ1 < 0 be all the negative eigenvalues of A11 and let ε be such that |λ1| > ε > 0.
Then 0 ∈ ρ(A11 + ε) and hence one can write

(

I 0
−A21(A11 + ε)−1 I

) (

A11 + ε A12
A21 A22 + ε

)(

I −(A11 + ε)−1A12
0 I

)

=
(

A11 + ε 0
0 A22 + ε − A21(A11 + ε)−1A12

)

(5)

The operator in the righthand side of (5) has κ negative eigenvalues if and only if

A21(A11 + ε)−1A12 ≤ A22 + ε (6)
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or equivalently

‖A11‖
∫

−‖A11‖
(t + ε)−1d‖Et A12 f ‖2 ≤ ε‖ f ‖2 + (A22 f, f ), (7)

where Et is the spectral family of A11 and f ∈ H2. We rewrite (7) in the form

∫

[−‖A11‖,0)(t + ε)−1d‖Et A12 f ‖2 + ∫

[0,‖A11‖](t + ε)−1d‖Et A12 f ‖2
≤ ε‖ f ‖2 + (A22 f, f ),

This yields the estimate

∫

[0,‖A11‖]
(t + ε)−1d‖Et A12 f ‖2 ≤ ε‖ f ‖2 + (A22 f, f ) − 1

λ1 + ε
‖A12 f ‖2. (8)

By letting ε ↘ 0 in (8) the monotone convergence theorem implies that

P+A12 f ∈ ran A1/2
11+ ⊂ ran |A11|1/2

for all f ∈ H2; here A11+ = ∫

[0,‖A11‖] t dEt stands for the nonnegative part of
A11 and P+ is the orthogonal projection onto the corresponding closed subspace
ran A11+ = ∫

[0,‖A11‖] dEt . Since ran (I − P+) is the κ-dimensional spectral subspace
of A11 corresponding to its negative spectrum, one concludes that

(I − P+)A12 f ∈ ran A11 ⊂ ran |A11|1/2

for all f ∈ H2. Therefore, ran A12 ⊂ ran |A11|1/2.
Conversely, if ran A12 ⊂ ran |A11|1/2, then the operator S := |A11|[−1/2]A12 is well

defined, closed and bounded, i.e., S ∈ [H2,H1]. Since A12 = |A11|1/2S, it follows
from A21 = S∗|A11|1/2 and

(|A11|1/2
S∗ J

)

J
(|A11|1/2 J S

) : ν−(A) = κ, (9)

that the operator A22 = S∗ J S gives a completion for A0.
(ii) The proof of (i) shows that A21 = S∗|A11|1/2 is well defined and that S∗ J S ∈

[H2] gives a solution to the completion problem (2). Now

s − lim
ε↘0

A21(A11 + ε)−1A12 = s − lim
ε↘0

S∗|A11|1/2(A11 + ε)−1|A11|1/2S = S∗ J S

and if A22 is an arbitrary operator in the set (4), then by letting ε ↘ 0 one concludes
that S∗ J S ≤ A22. Therefore, S∗ J S satisfies the desired minimality property.
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To prove the last statement assume that Y ∈ [H2] and that Y ≥ 0. Then A22 =
S∗ J S+Y inserted in A0 defines a block operator AY ≥ Amin. In particular, ν−(AY ) ≤
ν−(Amin) = κ < ∞. On the other hand, it is clear from the formula

AY =
(|A11|1/2

S∗ J

)

J
(|A11|1/2 J S

) +
(

0 0
0 Y

)

(10)

that the κ-dimensional eigenspace corresponding to the negative eigenvalues of A11
is AY -negative and, hence, ν−(AY ) ≥ κ . Therefore, ν−(AY ) = κ and Y ∈ A.

Notice that in the factorization A12 = |A11|1/2S, S is uniquely determined under
the condition ran S ⊂ ran A11 (which implies that ker A12 = ker S); cf. [32].

In the case that κ = 0, the result in Theorem 1 reduces to the well-known criterion
concerning completion of an incomplete block operator to a nonnegative operator; cf.
[59]. In the case of matrices acting on a finite dimensional Hilbert space, the result
with κ > 0 has been proved very recently in the appendix of [28], where it was applied
in solving indefinite truncated moment problems. In the present paper Theorem 1 will
be one of the main tools for further investigations.

2.2 Completion to operator blocks with an infinite negative index.

The completion result in Theorem 1 is of some general interest already by the sub-
stantial number of its applications known in the case of nonnegative operators. In this
section the completion problem is treated in the case that κ = ∞. For this purpose
some further notions will be introduced.

Recall that a subspace M ⊂ H is said to be uniformly A-negative, if there exists
a positive constant ν > 0 such that (A f, f ) ≤ −ν‖ f ‖2 for all f ∈ M. It is maxi-
mal uniformly A-negative, if M has no proper uniformly A-negative extension. The
completion problem is now extended by claiming from the completions the following
maximality property:

There exists a subspace M ⊂ H1which ismaximal uniformlyA-negative. (11)

Theorem 2 Let A0 be an incomplete block operator of the form (2) in the Hilbert
space H = H1 ⊕ H2. Let A11 = A∗

11 and A21 = A∗
12 be bounded, let J = sign (A11)

be the (unitary) signature operator of A11, and, in addition, assume that there is a
spectral gap (−δ, 0) ⊂ ρ(A11), δ > 0. Then:

(i) There exists a completion A ∈ [H] of A0 with some operator A22 = A∗
22 satisfying

the condition (11) if and only if

ran A12 ⊂ ran |A11|1/2.

(ii) If the condition in (i) is satisfied, then S = |A11|[−1/2]A12, where |A11|[−1/2]
denotes the (generalized) Moore–Penrose inverse of |A11|1/2, is well defined and
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S ∈ [H2,H1]. Moreover, S∗ J S is the smallest operator in the solution set

A := {A22 = A∗
22 ∈ [H2] : A = (Ai j )

2
i, j=1 satisfies (11)}

and this solution set admits a description as the (semibounded) operator interval
given by

A = {A22 ∈ [H2] : A22 = S∗ J S + Y, Y = Y ∗ ≥ 0}.

Proof To prove this result suitablemodifications in the proof of Theorem 1 are needed.
(i) First assume that A22 ∈ A gives a desired completion for A0. If ε ∈ (0, δ) then
0 ∈ ρ(A11 + ε) and therefore the block operator (Ai j ) satisfies the formula (5). We
claim that the condition (11) implies the inequality (6) for all sufficiently small values
ε > 0. To see this letM ⊂ H1 be a subspace for which the condition (11) is satisfied.
Then (A11 f, f ) ≤ −ν‖ f ‖2 for some fixed ν > 0 and for all f ∈ M. Assume that
for some 0 < ε0 < min{ν, δ} (6) is not satisfied. Then ((A22 + ε0 − A21(A11 +
ε0)

−1A12)v0, v0) < 0 holds for some vector v0 ∈ H2. Define L = W−1
ε0

(M +
span {v0}), where

Wε0 =
(

I −(A11 + ε0)
−1A12

0 I

)

.

Clearly, Wε0 is bounded with bounded inverse and it maps M bijectively onto M, so
that L is a 1-dimensional extension of M. It follows from (5) that for all f ∈ L,

(A f, f ) + ε0‖ f ‖2 =
((

A11 + ε0 0
0 A22 + ε0 − A21(A11 + ε0)

−1A12

)

u, u

)

< 0,

where u = Wε0 f ∈ M + span {v0}. Therefore, L is a proper uniformly A-negative
extension ofM; a contradiction, which shows that (6) holds for all 0 < ε < min{ν, δ}.
Then, as in the proof of Theorem 1 it is seen that ran A12 ⊂ ran |A11|1/2; note that in
the estimate (8) λ1 is to be replaced by −δ.

Conversely, if ran A12 ⊂ ran |A11|1/2, then S = |A11|[−1/2]A12 ∈ [H2,H1] and the
block operator A in (9) gives a completion. To prove that A satisfies (11) observe that
ifM is a uniformly A-negative subspace in H, then

(|A11|1/2 J S
)

maps it bijectively
onto a uniformly J -negative subspace in H1. The spectral subspace corresponding
to the negative spectrum of A11 is maximal uniformly J -negative in H1 and also
uniformly A-negative in H. By the above mapping property this subspace must be
maximal uniformly A-negative in H.

(ii) If A22 = A∗
22 defines a completion A ∈ [H] of A0 such that (11) is satisfied then

by the proof of (i) the inequality (6) holds for all sufficiently small values ε > 0. Now
the minimality property of S∗ J S can be obtained in the same manner as in Theorem 1.

As to the last statement again for every Y ∈ [H2], Y ≥ 0, the block operator AY

defined in the proof of Theorem 1 satisfies AY ≥ Amin. Hence, every uniformly AY -
negative subspace is also uniformly Amin-negative. Now it follows from the formula
(10) that the spectral subspace corresponding to the negative spectrum of A11, which
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is maximal uniformly Amin-negative, is also maximal uniformly AY -negative. Hence,
AY satisfies (11) and Y ∈ A.

3 Some factorizations of operators with finite negative index

Theorems 1 and 2 contain a valuable tool in solving a couple of other problems, which
initially do not occur as a completion problem of some symmetric incomplete block
operator. In this section it is shown that Theorem 1 (a) can be used to characterize
the existence of certain J -contractive factorizations of operators via a minimal index
condition; (b) implies an extension of thewell-knownDouglas factorization result with
a certain specification to the Bognár–Krámli factorization; (c) yields an extension of
a factorization result of Shmul’yan for J -bicontractions; (d) allows an extension of
a classical Sylvester’s law of inertia of a block operator, which is originally used in
characterizing nonnegativity of a bounded block operator via Schur complement.

Some simple inertia formulas are now recalled. The factorization H = B∗EB
clearly implies that ν±(H) ≤ ν±(E). If H1 and H2 are selfadjoint operators, then

H1 + H2 =
(

I
I

)∗ (

H1 0
0 H2

) (

I
I

)

shows that ν±(H1+H2) ≤ ν±(H1)+ν±(H2). Consider the selfadjoint block operator
H ∈ [H1 ⊕ H2] of the form

H =
(

A B∗
B J2

)

, (12)

where J2 = J ∗
2 = J−1

2 . By applying the above mentioned inequalities shows that

ν±(A) ≤ ν±(A − B∗ J2B) + ν±(J2). (13)

Assuming that ν−(A−B∗ J2B) and ν−(J2) are finite, the question when ν−(A) attains
its maximum in (13), or equivalently, ν−(A − B∗ J2B) ≥ ν−(A) − ν−(J2) attains its
minimum, turns out to be of particular interest. The next result characterizes this
situation as an application of Theorem 1. Recall that if A = JA|A| is the polar decom-
position of A, then one can interpret HA = (ran A, JA) as a Kreı̆n space generated on
ran A by the fundamental symmetry JA = sgn (A).

Theorem 3 Let A ∈ [H1] be selfadjoint, B ∈ [H1,H2], J2 = J ∗
2 = J−1

2 ∈ [H2], and
assume that ν−(A), ν−(J2) < ∞. If the equality

ν−(A) = ν−(A − B∗ J2B) + ν−(J2) (14)

holds, then ran B∗ ⊂ ran |A|1/2 and B∗ = |A|1/2K for a unique operator K ∈
[H2,HA] which is J -contractive: J2 − K ∗ JAK ≥ 0.

Conversely, if the equality B∗ = |A|1/2K holds for some J-contractive operator
K ∈ [H2, ran A], then the equality (14) is satisfied.
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Proof Assume that (14) is satisfied. The factorization

H =
(

A B∗
B J2

)

=
(

I B∗ J2
0 I

) (

A − B∗ J2B 0
0 J2

)(

I 0
J2B I

)

shows that ν−(H) = ν−(A − B∗ J2B) + ν−(J2), which combined with the equality
(14) gives ν−(H) = ν−(A). Therefore, by Theorem 1 one has ran B∗ ⊂ ran |A|1/2
and this is equivalent to the existence of a unique operator K ∈ [H2, dom A] such that
B∗ = |A|1/2K ; i.e. K = |A|[−1/2]B∗. Furthermore, K ∗ JAK ≤ J2 by the minimality
property of K ∗ JAK in Theorem 1, in other words K is a J -contraction.

Converse, if B∗ = |A|1/2K for some J -contraction K ∈ [H2, dom A], then clearly
ran B∗ ⊂ ran |A|1/2. By Theorem 1 the completion problem for H0 has solutions with
the minimal solution S∗ JAS, where

S = |A|[−1/2]B∗ = |A|[−1/2]|A|1/2K = K .

Furthermore, by J -contractivity of K one has K ∗ JAK ≤ J2, i.e. J2 is also a solution
and thus ν−(H) = ν−(A) or, equivalently, the equality (14) is satisfied.

While Theorem 3 is obtained as a direct consequence of Theorem 1 it will be
shown in the next section that this result yields simple solutions to a wide class of
lifting problems for contractions in Hilbert, Pontryagin and Kreı̆n space settings.

Before deriving the next result some inertia formulas for a class of selfadjoint block
operators are recalled. Consider the following two representations

(

J1 T ∗
T J2

)

=
(

I 0
T J1 I

) (

J1 0
0 J2 − T J1T ∗

) (

I J1T ∗
0 I

)

=
(

I T ∗ J2
0 I

)(

J1 − T ∗ J2T 0
0 J2

) (

I 0
J2T I

)

,

where Ji = J ∗
i = J−1

i , i = 1, 2. Since here the triangular operators are bounded
with bounded inverse, one concludes that ran (J2 − T J1T ∗) is closed if and only if
ran (J1 − T ∗ J2T ) is closed. Furthermore, one gets the following inertia formulas; cf.
e.g. [13, Proposition 3.1].

Lemma 1 With the above notations one has

ν±(J1 − T ∗ J2T ) + ν±(J2) = ν±(J2 − T J1T
∗) + ν±(J1),

ν0(J1 − T ∗ J2T ) = ν0(J2 − T J1T
∗).

The next result contains two general factorization results: assertion (i) contains an
extension of the well-known Douglas factorization, see [32,35], and assertion (ii) is
a specification of the so-called Bognár–Krámli factorization, see [18]: A = B∗ J2B
holds for some bounded operator B if and only if ν±(J2) ≥ ν±(A).
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Proposition 1 Let A, B, and J2 be as in Theorem 3, and let ν−(A) = ν−(J2) < ∞.
Then:

(i) The inequality
A ≥ B∗ J2B (15)

holds if and only if B = C |A|1/2 for some J-contractive operator C ∈ [HA,H2];
in this case C is unique and, in addition, J -bicontractive, i.e., JA − C∗ J2C ≥ 0
and J2 − C JAC∗ ≥ 0.

(ii) The equality
A = B∗ J2B (16)

holds if and only if B = C |A|1/2 for some J-isometric operator C ∈ [HA,H2];
again C is unique. In addition, C is unitary if and only if ran B is dense in H2.

Proof (i) The inequality (15) means that ν−(A− B∗ J2B) = 0. Hence the assumption
ν−(A) = ν−(J2) < ∞ implies the equality (14). Therefore, the desired factorization
for B is obtained from Theorem 3. Conversely, if B = C |A|1/2 for some J -contractive
operator C then (14) holds by Theorem 3 and the assumption ν−(A) = ν−(J2) < ∞
implies that ν−(A − B∗ J2B) = 0.

The fact that C is actually J -bicontractive follows directly from Lemma 1.
(ii) Assume that (16) holds. Then by part (i) it remains to prove that in the factor-

ization B = C |A|1/2 the operator C is isometric. Substituting B = C |A|1/2 into (16)
gives

A = |A|1/2C∗ J2C |A|1/2.

Since domC, ranC∗ ⊂ ran A and A = |A|1/2 JA|A|1/2, the previous identity implies
the equality JA = C∗ J2C , i.e., C is J -isometric. Conversely, if C is J -isometric then
clearly (16) holds.

Since B = C |A|1/2 and C ∈ [HA,H2], it is clear that B has dense range in
H2 precisely when the range of C is dense in H2. The (Kreı̆n space) adjoint is a
bounded operator with domC [∗] = H2. By isometry one has C−1 ⊂ C [∗], and thus
C−1 is also bounded, densely defined and closed. Thus, the equality C−1 = C [∗]
prevails, i.e., C is J -unitary. Conversely, if C is unitary then C−1 = C [∗] holds and
ranC = domC [∗] = H2. Consequently, ran B = ranC |A|1/2 is dense in H2.

If, in particular, ν−(A) = ν−(J2) = 0 then 0 ≤ A ≤ B∗B and Proposition 1
combined with Theorem 1 yields the factorization and range inclusion results proved
in [32, Theorem 1] with A replaced by A∗A. In particular, notice that if ran B∗ ⊂
ran |A|1/2, then already Theorem 1 alone implies that S = |A|[−1/2]B∗ is bounded
and hence B∗B = |A|1/2SS∗|A|1/2 ≤ ‖S‖2A.

Assertions in part (ii) of Corollary 1 can be found in the literature with a different
proof. In fact, the first statement in (ii) appears in [13, Proposition 2.1,Corollary 2.6]
while the second statement in (ii) is proved in [23, Corollary 1.3]. Another extension
for Douglas’ factorization result can be found from [58].

For a general treatment of isometric (not necessarily densely defined) operators
and isometric relations appearing in the proof of Proposition 1 the reader is referred
to [14], [26, Section 2], and [27].
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A slightly different viewpoint to Proposition 1 gives the following statement, which
can be viewed as an extension of a theorem by Shmul’yan, see [60, Theorem 3], on the
factorization of bicontractions on Kreı̆n spaces; for a related abstract Leech theorem,
see [34, Section 3.4].

Corollary 1 Let A ∈ [H1] be selfadjoint, let B ∈ [H1,H2], and let J2 = J ∗
2 = J−1

2 ∈
[H2] with ν−(J2) < ∞. Then:

(i)

A ≥ B∗ J2B and ν−(A) = ν−(J2)

if and only if B = C |A|1/2 for some J-bicontractive operator C ∈ [HA,H2]; in
this case C is unique.

(ii)

A = B∗ J2B and ν−(A) = ν−(J2)

if and only if B = C |A|1/2 for some J-bicontractive operator C which is also
J -isometric, i.e., JA − C∗ J2C = 0 and J2 − C JAC∗ ≥ 0; again C is unique.

Proof Observe that if C is J -bicontractive, then an application of Lemma 1 shows
that ν−(J2) = ν−(JA) = ν−(A). Now the stated equivalences can be obtained from
Proposition 1.

This section is finished with an extension of Sylvester’s law of inertia, which is
actually obtained as a consequence of Theorem 1.

Proposition 2 Let A = (Ai j )
2
i, j=1 be an arbitrary selfadjoint block operator in H =

H1 ⊕ H2, which satisfies the range inclusion (3), and let S = |A11|[−1/2]A12. Then
ν−(A) < ∞ if and only if ν−(A11) < ∞ and ν−(A22 − S∗ J S) < ∞; in this case

ν−(A) = ν−(A11) + ν−(A22 − S∗ J S).

In particular, A ≥ 0 if and only if ran A12 ⊂ ran |A11|1/2, A11 ≥ 0, and A22−S∗ J S ≥
0.

Proof By the assumption (3) S = |A11|[−1/2]A12 is an everywhere defined bounded
operator and, since A11 = |A11|1/2 J |A11|1/2 (cf. Theorem 1), the following equality
holds:

A =
(|A11|1/2 0

S∗ J I

)(

J 0
0 A22 − S∗ J S

)(|A11|1/2 J S
0 I

)

,

i.e. A = B∗EB where E stands for the diagonal operator with ν−(E) = ν−(A11) +
ν−(A22 − S∗ J S) and the triangular operator B on the right side is bounded and has
dense range in ran A11 ⊕ H2. Clearly, ν−(A) ≤ ν−(E) and it remains to prove that if
ν−(A) < ∞ then ν−(A) = ν−(E).
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To see this assume that ν−(A) < ν−(E). We claim that ran B contains an E-
negative subspace L with dimension dimL > ν−(A). Assume the converse and let
L ⊂ ran B be a maximal E-negative subspace with dimL ≤ ν−(A). Then (EL)⊥
must be E-nonnegative, since if v ⊥ EL and (Ev, v) < 0, then span {v+L}would be
a proper E-negative extension of L. Since EL is finite dimensional and ran B is dense
in ran A11 ⊕ H2, ran B has dense intersection with (ran A11 ⊕ H2) � EL, and hence
the closure of this subspace is also E-nonnegative. Consequently, ν−(E) = ν−(L), a
contradiction with the assumption ν−(E) > ν−(A). This proves the claim that ran B
contains an E-negative subspace Lwith dimL > ν−(A). However, then the subspace
L′ = {u ∈ ran A11 ⊕ H2 : Bu ∈ L} satisfies dimL′ ≥ dimL and, moreover, L′ is
A-negative: (Au, u) = (EBu, Bu) < 0, u ∈ L′, u �= 0. Thus, ν−(A) ≥ dimL, a
contradiction with dimL > ν−(A). This completes the proof.

Proposition 2 completes Theorem 1: if ran A12 ⊂ ran |A11|1/2 then A11 = J |A11|
and A12 = |A11|1/2S imply that A21|A11|[−1/2] J |A11|[−1/2]A12 = S∗ J S. Hence the
negative index of A can be calculated by using the following version of a generalized
Schur complement or a shorted operator (defined initially for a nonnegative operator
H in (1))

AH2 :=
(

0 0
0 A22 − S∗ J S

)

(17)

via the explicit formula

ν−(A) = ν−(A11) + ν−(A22 − A21|A11|[−1/2] J |A11|[−1/2]A12). (18)

The addition made in Proposition 2 concerns selfadjoint operators A22 that are not
solutions to the original completion problem for A0.

The notion of a shorted operator in infinite dimensional Hilbert spaces has been
extended to the case of not necessarily selfadjoint block operators in a paper by
Antezana et al. [6]. These so-called bilateral shorted operators introduced and studied
therein use two range inclusions, see [6, Definitions 3.5, 4.1], which in the selfadjoint
case reduce to the single condition (3) appearing in Theorems 1 and 2.

4 Lifting of operators with finite negative index

As a first application of the completion problem solved in Sect. 2 it is shown how
nicely some lifting results established in a series of papers by Arsene, Constantinescu,
and Gheondea, see [12,13,23,24], as well as in Dritschel and Rovnyak [33,34] (see
also further references appearing in these papers) on contractive operators with finite
number of negative squares can be derived from Theorem 1.

For this purpose some standard notations are introduced. Let (H1, (·, ·)1) and
(H2, (·, ·)2) be Hilbert spaces and let J1 and J2 be symmetries in H1 and H2, i.e.
Ji = J ∗

i = J−1
i , so that (Hi , (Ji ·, ·)i ), i = 1, 2, becomes a Kreı̆n space. Then asso-

ciate with T ∈ [H1,H2] the corresponding defect and signature operators
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DT = |J1 − T ∗ J2T |1/2, JT = sign (J1 − T ∗ J2T ), DT = ran DT ,

where the so-called defect subspace DT can be considered as a Kreı̆n space with the
fundamental symmetry JT . Similar notations are used with T ∗:

DT ∗ = |J2 − T J1T
∗|1/2, JT ∗ = sign (J2 − T J1T

∗), DT ∗ = ran DT ∗ .

By definition JT D2
T = J1 − T ∗ J2T and JT DT = DT JT with analogous identities

for DT ∗ and JT ∗ . In addition,

(J1 − T ∗ J2T )J1T ∗ = T ∗ J2(J2 − T J1T ∗),
(J2 − T J1T ∗)J2T = T J1(J1 − T ∗ J2T ).

(19)

Recall that T ∈ [H1,H2] is said to be a J -contraction if J1 − T ∗ J2T ≥ 0, i.e.
ν−(J1 − T ∗ J2T ) = 0. If, in addition, T ∗ is a J -contraction, T is termed as a J -
bicontraction, in which case ν−(J1) = ν−(J2) by Lemma 1. In what follows it is
assumed that

κ1 := ν−(J1 − T ∗ J2T ) < ∞, κ2 := ν−(J2 − T J1T
∗) < ∞.

In this case Lemma 1 shows that

ν−(J2) = ν−(J1) + κ2 − κ1. (20)

The aim in this section is to show applicability of Theorem 1 in establishing for-
mulas for so-called liftings ˜T of T with prescribed negative indices κ̃1 and κ̃2 for the
defect subspaces, equivalently, for the associated signature operators. Given a bounded
operator T ∈ [H1,H2] the problem is to describe all operators ˜T from the extended
Kreı̆n space (H1 ⊕H′

1, J1 ⊕ J ′
1) to the extended Kreı̆n space (H2 ⊕H′

2, J2 ⊕ J ′
2) such

that

(*) P2˜T �H1 = T and ν−(˜J1 − ˜T ∗
˜J2˜T ) = κ̃1, ν−(˜J2 − ˜T ˜J1˜T

∗) = κ̃2,

with some fixed values of κ̃1, κ̃2 < ∞. Here Pi stands for the orthogonal projection
from ˜Hi = Hi ⊕H′

i onto Hi and ˜Ji = Ji ⊕ J ′
i , i = 1, 2. In addition, it is assumed that

the exit spaces are Pontryagin spaces, i.e., that

ν−(J ′
1), ν−(J ′

2) < ∞.

Following [13,23] consider first the following column extension problem:
(∗)c Give a description of all operators Tc = col

(

T C
) ∈ [H1,H2 ⊕H′

2], such that
ν−(J1 − T ∗

c
˜J2Tc) = κ̃1 (< ∞).

Since J1 − T ∗
c

˜J2Tc = J1 − T ∗ J2T − C∗ J ′
2C , then necessarily (see Sect. 3)

κ̃1 ≥ κ1 − ν−(C∗ J ′
2C) ≥ κ1 − ν−(J ′

2).
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Moreover, it is clear that κ̃2 ≥ κ2, since J2 − T J1T ∗ appears as the first diagonal
entry of the 2×2 block operator ˜J2 −Tc J1T ∗

c when decomposed w.r.t.˜Hi = Hi ⊕H′
i ,

i = 1, 2.
With the minimal value of κ̃1 all solutions to this problem will now be described by

applying Theorem 1 to an associated 2 × 2 block operator TC appearing in the proof
below; in fact the result is just a special case of Theorem 3.

Lemma 2 Let κ̃1 = ν−(J1 −T ∗
c

˜J2Tc) and assume that κ̃1 = κ1 −ν−(J ′
2)(≥ 0). Then

ranC∗ ⊂ ran DT and the formula

Tc =
(

T
K ∗DT

)

establishes a one-to-one correspondence between the set of all solutions to Problem
(∗)c and the set of all J -contractions K ∈ [H′

2,DT ].
Proof To make the argument more explicit consider the following block operator

TC :=
(

J1 − T ∗ J2T C∗
C J ′

2

)

=
(

I C∗ J ′
2

0 I

)(

J1 − T ∗
c

˜J2Tc 0
0 J ′

2

)(

I 0
J ′
2C I

)

.

Clearly ν−(TC ) = ν−(J1 − T ∗
c

˜J2Tc) + ν−(J ′
2) < ∞, which combined with κ̃1 =

κ1 − ν−(J ′
2) shows that ν−(TC ) = κ1 = ν−(J1 − T ∗ J2T ). Now, the statement is

obtained from Theorem 1 or, more directly, just by applying Theorem 3.

Remark 1 (i) The above proof,which essentiallymakes use of an associated 2×2 block
operator TC (being a special case of the block operator H in (12) behind Theorem 3),
is new even in the case of Hilbert space contractions. In particular, it shows that the
operator K in Lemma 2 coincides with the operator S that gives the minimal solution
S∗ JT S to the completion problem associated with TC ; the J -contractivity of K itself
is equivalent to the fact that TC is also a solution precisely when κ̃ = κ − ν−(J ′

2).
(ii) The existence of a solution to Problem (∗)c is proved here using only the

condition κ̃1 = κ1 − ν−(J ′
2) (≥ 0). The corresponding result in [23, Lemma 2.2] is

formulated (and formally also proved) under the additional condition κ̃2 = κ2. In the
case that ν−(J1) < ∞ the equality κ̃2 = κ2 follows automatically from the equality
κ̃1 = κ1 − ν−(J ′

2): to see this apply (20) to T and Tc, which leads to ν−(J1) + κ2 =
ν−(J1) + κ̃2, so that ν−(J1) < ∞ implies κ2 = κ̃2. Naturally, in Lemma 2 the
condition κ̃2 = κ2 follows from the condition κ̃1 = κ1−ν−(J ′

2) also in the case where
ν−(J1) = ∞; see Corollary 3 below.

Finally, it is mentioned that for a Pontryagin space operator T the result in Lemma 2
was proved in [13, Lemma 5.2].

In a dual manner we can treat the following row extension problem; again initially
considered in [13,23]:

(∗)r Give a description of all operators Tr = (

T R
) ∈ [H1 ⊕ H′

1,H2], such that
ν−(J2 − Tr ˜J1T ∗

r ) = κ̃2 (< ∞).
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Analogous to the case of column operators, J2 − Tr ˜J1T ∗
r = J2 − T J1T ∗ − RJ ′

1R
∗

gives the estimate

κ̃2 ≥ κ2 − ν−(RJ ′
1R

∗) ≥ κ2 − ν−(J ′
1).

Moreover, it is clear that κ̃1 ≥ κ1.With theminimal value of κ̃2 all solutions to Problem
(∗)r are established by applying Theorem 1 to an associated 2× 2 block operator TR .

Lemma 3 Let κ̃2 = ν−(J2 −Tr ˜J1T ∗
r ) and assume that κ̃2 = κ2 −ν−(J ′

1)(≥ 0). Then
ran R ⊂ ran DT ∗ and the formula

Tr = (

T DT ∗ B
)

establishes a one-to-one correspondence between the set of all solutions to Problem
(∗)r and the set of all J -contractions B ∈ [H′

1,DT ∗ ].
Proof To prove the statement via Theorem 1 (cf. Theorem 3) consider

TR :=
(

J2 − T J1T ∗ R
R∗ J ′

1

)

=
(

I R J ′
1

0 I

) (

J2 − Tr ˜J1T ∗
r 0

0 J ′
1

) (

I 0
J ′
1R

∗ I

)

.

Then clearly ν−(TR) = ν−(J2 − Tr ˜J1T ∗
r ) + ν−(J ′

1) and hence the assumption κ̃2 =
κ2 − ν−(J ′

1) is equivalent to ν−(TR) = κ2 = ν−(J2 − T J1T ∗). Therefore, again the
statement follows from Theorem 1 or directly from Theorem 3.

Remarks similar to those made after Lemma 2 can be done here, too. In particu-
lar, the corresponding result in [23, Lemma 2.1] is formulated under the additional
condition κ̃1 = κ1: here this equality will be a consequence from the equality
κ̃2 = κ2 − ν−(J ′

1); cf. Corollary 3 below.
To prove the main result concerning parametrization of all 2× 2 liftings in a larger

Kreı̆n space with minimal signature for the defect operators an indefinite version of
the commutation relation of the form T DT = DT ∗T is needed; these involve so-called
link operators introduced in [13, Section 4].

We will give a simple proof for the construction of link operators (see [13, Propo-
sition 4.1]) by applying Heinz inequality combined with the basic factorization result
from [32]. The first step is formulated in the next lemma, which is connected to a
result of Kreı̆n [48] concerning continuity of a bounded Banach space operator which
is symmetric w.r.t. to a continuous definite inner product; the existence of link oper-
ators was proved in [13] via this result of Kreı̆n. Here a statement, analogous to that
of Kreı̆n, is formulated in pure Hilbert space operator language by using the modulus
of the product operator; see [34, Lemma B2], where Kreı̆n’s result is presented with
a proof due to W. T. Reid.

Lemma 4 Let S ∈ [H1,H2] and let H ∈ [H2] be nonnegative. Then

HS = (HS)∗ ⇒ |HS| ≤ μH for some μ < ∞.
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Proof Since HS is selfadjoint, one obtains

(HS)2 = HSS∗H ≤ μ2H2, μ = ‖S‖ < ∞.

Now by Heinz inequality (see e.g. [17, Theorem 10.4.2]) we get

|HS| = (HSS∗H)1/2 ≤ μH.

Corollary 2 Let T ∈ [H1,H2] and let J1 and J2 be symmetries in H1 and H2 as
above. Then there exist unique operators LT ∈ [DT ,DT ∗ ] and LT ∗ ∈ [DT ∗ ,DT ]
such that

DT ∗LT = T J1DT �DT , DT LT ∗ = T ∗ J2DT ∗�DT ∗;
in fact, LT = D[−1]

T ∗ T J1DT �DT and LT ∗ = D[−1]
T T ∗ J2DT ∗�DT ∗ .

Proof Denote S = JT ∗ J2T JT J1T ∗. Then (19) implies that

D2
T ∗ S = (J2 − T J1T

∗)J2T JT J1T
∗

= T J1(J1 − T ∗ J2T )JT J1T
∗

= T J1D
2
T J1T

∗ ≥ 0,

so that D2
T ∗S is nonnegative and, in particular, selfadjoint. By Lemma 4 withμ = ‖S‖

one has

0 ≤ T J1D
2
T J1T

∗ = D2
T ∗ S ≤ μD2

T ∗ .

This last inequality is equivalent to the factorization T J1DT �DT = DT ∗LT with a
unique operator LT ∈ [DT ,DT ∗ ], see [32, Theorem 1], which by means of Moore–
Penrose generalized inverse can be rewritten as indicated.

The second formula is obtained by applying the first one to T ∗.
The following identities can be obtainedwith direct calculations; see [13, Section 4]:

L∗
T JT ∗�DT ∗ = JT LT ∗;

(JT − DT J1DT )�DT = L∗
T JT ∗LT ;

(JT ∗ − DT ∗ J2DT ∗)�DT ∗ = L∗
T ∗ JT LT ∗ .

(21)

The next corollary contains the promised identity κ̃1 = κ1 under the assumption
κ̃2 = κ2 − ν−(J ′

2) ≥ 0 in Lemma 3. Similarly κ̃1 = κ1 − ν−(J ′
1) implies κ̃2 = κ2;

the general result for the first case can be formulated as follows (and there is similar
result for the latter case).

Corollary 3 Let R be a bounded operator such that ran R ⊂ ran DT ∗ and let Tr be
the corresponding row operator and denote κ̃1 = ν−(˜J1 −T ∗

r J2Tr ). Then R = DT ∗ B
for a (unique) bounded operator B ∈ [H′

1,DT ∗ ] and
κ̃1 = κ1 + ν−(J ′

1 − B∗ JT ∗ B).

In particular, J -contractivity of B is equivalent to κ̃1 = κ1.
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Proof Recall that ran R ⊂ ran DT ∗ is equivalent to the factorization R = DT ∗ B. By
applying the commutation relations in Corollary 2 together with the identities (21)
one gets the following expression for JTr D

2
Tr
:

JTr D
2
Tr

=
(

J1 − T ∗ J2T −T ∗ J2DT ∗ B
−B∗DT ∗ J2T J ′

1 − B∗DT ∗ J2DT ∗ B

)

=
(

JT D2
T −DT LT ∗ B

−B∗L∗
T ∗ DT JBD2

B + B∗L∗
T ∗ JT LT ∗ B

)

.

(22)

Now apply Proposition 2 and calculate the Schur complement, cf. (18),

JBD
2
B + B∗L∗

T ∗ JT LT ∗ B − B∗L∗
T ∗ DT (D[−1]

T JT D
[−1]
T )DT LT ∗ B = JBD

2
B,

to see that κ̃1 = ν−(J1 − T ∗ J2T ) + ν−(J ′
1 − B∗ JT ∗ B).

By means of Lemmas 2, 3 and the link operators in Corollary 2 one can now
establish the main result concerning the lifting problem (∗).

First notice that if Problem (∗) has a solution, then by treating ˜T as a row extension
of its first column Tc and as a column extension of its first row Tr one gets from the
inequalities preceding Lemmas 2, 3 the estimates

κ̃1 ≥ κ1(Tr ) − ν−(J ′
2) ≥ κ1 − ν−(J ′

2);
κ̃2 ≥ κ2(Tc) − ν−(J ′

1) ≥ κ2 − ν−(J ′
1).

(23)

Under the minimal choice of the indices κ̃1 and κ̃2 Problem (∗) is already solvable;
all solutions are described by the following result, which was initially proved in [23,
Theorem 2.3] with the aid of [13, Theorem 5.3]. Here a different proof is presented,
again based on an application of Theorem 1.

Theorem 4 Let˜T be a bounded operator from (H1⊕H′
1, J1⊕J ′

1) to (H2⊕H′
2, J2⊕J ′

2)

such that P2˜T �H1 = T . Assume that 0 ≤ κ1 − ν−(J ′
2) = κ̃1 < ∞ and 0 ≤

κ2 − ν−(J ′
1) = κ̃2 < ∞. Then the Problem (∗) is solvable and the formula

˜T =
(

T DT ∗�1
�2DT −�2L∗

T JT ∗�1 + D�∗
2
�D�1

)

establishes a one-to-one correspondence between the set of all solutions to Problem
(∗) and the set of triplets {�1, �2, �} where �1 ∈ [H′

1,DT ∗ ] and �∗
2 ∈ [H′

2,DT ] are
J -contractions and � ∈ [D�1,D�∗

2
] is a Hilbert space contraction.

Proof Assume that there is a solution ˜T to Problem (∗) and write it in the form

˜T =
(

T R
C X

)

with the first column denoted by Tc and first row denoted by Tr , and assume that
κ̃1 = κ1 − ν−(J ′

2) and κ̃2 = κ2 − ν−(J ′
1). Then (23) shows that κ1 = κ1(Tr ) and
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κ2 = κ2(Tc). Hence Lemma 3 can be applied by viewing ˜T as a row extension of Tc
to get a range inclusion and then from Corollary 3 one gets the equality κ̃1 = κ1(Tc).
Similarly applying Lemma 2 and the analog of Corollary 3 to column operator ˜T one
gets the equality κ̃2 = κ2(Tr ). Thus κ1(Tc) = κ1 − ν−(J ′

2) and κ2(Tr ) = κ2 − ν−(J ′
1).

Consequently, one can apply Lemma 2 to the first column Tc and Lemma 3 to the
first row Tr to get the stated factorizations C = �2DT and R = DT ∗�1 with unique
J -contractions �1 and �∗

2 .
To establish a formula for X we proceed by considering the block operator

H :=
(

JTr D
2
Tr

T ∗
r,2

Tr,2 J ′
2

)

,

where Tr,2 denotes the second row of ˜T . It is straightforward to derive the following
formula for the Schur complement

JTr D
2
Tr − T ∗

r,2 J
′
2Tr,2 = ˜J1 − ˜T ∗

˜J2˜T .

Thus ν−(H) = κ̃1 + ν−(J ′
2) = κ1 = ν−(JTr ) and one can apply Theorem 1 to get the

factorization T ∗
r,2 = DTr

˜K with a unique ˜K ∈ [H′
2,DTr ] satisfying ˜K ∗ JTr ˜K ≤ J ′

2,
i.e., ˜K is a J -contraction; see Theorem 3.

It follows from (22) that

JTr D
2
Tr =

(

DT 0
−�∗

1L
∗
T ∗ JT D�1

) (

JT 0
0 ID�1

) (

DT −JT LT ∗�1
0 D�1

)

=: B∗
̂J B.

Since here ν−(JTr ) = κ1 = ν−(JT ) and B is a triangular operatorwhose range is dense
inDT ⊕D�1 (the diagonal entries DT and D�1 of B have dense ranges by definition),
there is a unique Pontryagin space J -unitary operator U from DTr onto DT ⊕ D�1

such that B = UDTr ; see Proposition 1 (ii). It follows that K ∗ := (U−1)∗ ˜K is a J -
contraction from H′

2 toDT ⊕ D�1 and K B = ˜K ∗DTr = Tr,2. Now J ′
2 − K ̂J K ∗ ≥ 0

gives
0 ≤ K1K

∗
1 ≤ J ′

2 − K0 JT K
∗
0 , (24)

where K = (K0 K1) is considered as a row operator, and Tr,2 = K B reads as

�2DT = K0DT , X = −K0 JT LT ∗�1 + K1D�1 .

Since all contractions that are involved are unique, K0 = �2, J ′
2 − K0 JT K ∗

0 = D2
�∗
2
,

and (24) implies that there is a unique Hilbert space contraction � ∈ [D�1,D�∗
2
] such

that K1 = D�∗
2
�. The desired formula for ˜T is proven (cf. (21)). It is clear from the

proof that every operator ˜T of the stated form is a solution and that there is one-to-one
correspondence via the triplets {�1, �2, �} of J -contractions.
Remark 2 (i) By replacing ˜T with its adjoint ˜T ∗ it is clear that all formulas remain
the same and are obtained by changing T with T ∗ and interchanging the roles of the
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indices 1 and 2; see also (21). This connects the considerations with row and column
operators to each other.

(ii) If κ1 = 0 so that J1−T ∗ J2T ≥ 0, then the above proof becomes slightly simpler
since then JTr , JT , and J ′

2 are identity operators and ˜K is a Hilbert space contraction.
Then Theorem 4 gives all contractive liftings of a contraction in a Kreı̆n space. If in
addition κ2 = 0, then one gets all bicontractive liftings of a bicontraction in a Kreı̆n
space with Pontryagin spaces as exit spaces. In the special case that the exit spaces are
Hilbert spaces (ν−(J1) = ν−(J2) = 0 and κ1 = κ2 = 0) Theorem 4 coincides with
[33, Theorem 3.6]. In fact, the present proof can be seen as a further development of
the proof appearing in that paper; see also further references and historical remarks
given in [33,34].

5 Contractive extensions of contractions with minimal negative indices

Let H1 be a closed linear subspace of the Hilbert space H, let T11 = T ∗
11 ∈ [H1] be an

operator such that ν−(I − T 2
11) = κ < ∞. Denote

J = sign (I − T 2
11), J+ = sign (I − T11), and J− = sign (I + T11), (25)

and let κ+ = ν−(I−T11) and κ− = ν−(I+T11). It is obvious that J = J− J+ = J+ J−.
Moreover, there is an equality κ = κ− + κ+ as stated in the next lemma.

Lemma 5 Let T = T ∗ ∈ [H1] be an operator such that ν−(I − T 2) = κ < ∞ then
ν−(I − T 2) = ν−(I + T ) + ν−(I − T ).

Proof Let Et (·) be the resolution of identity of T . Then by the spectral mapping
theorem the spectral subspace corresponding to the negative spectrum of I − T 2

is given by Et ((∞;−1) ∪ (1;∞)) = Et ((−∞;−1)) ⊕ Et ((1;∞)). Consequently,
ν−(I − T 2) = dim Et ((−∞;−1)) + dim Et ((1;∞)) = ν−(I + T ) + ν−(I − T ).

The next problem concerns the existence and a description of selfadjoint operators
T such that ˜A+ = I + T and ˜A− = I − T solve the corresponding completion
problems

A0± =
(

I ± T11 ±T ∗
21±T21 ∗

)

, (26)

underminimal index conditions ν−(I +T ) = ν−(I +T11), ν−(I −T ) = ν−(I −T11),
respectively. Observe, that if I±T provides an arbitrary completion to A0± then clearly
ν−(I ±T ) ≥ ν−(I ±T11). Thus by Lemma 5 the two minimal index conditions above
are equivalent to the single condition ν−(I − T 2) = ν−(I − T 2

11).
Unlike with the case of a selfadjoint contraction T11, this problem need not have

solutions when ν−(I − T 2
11) > 0. It is clear from Theorem 1 that the conditions

ran T ∗
21 ⊂ ran |I − T11|1/2 and ran T ∗

21 ⊂ ran |I + T11|1/2 are necessary for the
existence of solutions; however alone they are not sufficient.

The next theorem gives a general solvability criterion for the completion problem
(26) and describes all solutions to this problem, when the criterion is satisfied. As in
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the definite case, there are minimal solutions A+ and A− which are connected to two
extreme selfadjoint extensions T of

T1 =
(

T11
T21

)

: H1 →
(

H1
H2

)

, (27)

nowwith finite negative index ν−(I −T 2) = ν−(I −T 2
11) > 0. The set of all solutions

T to the problem (26) will be denoted by Ext T1,κ (−1, 1).

Theorem 5 Let T1 be a symmetric operator as in (27) with T11 = T ∗
11 ∈ [H1] and

ν−(I − T 2
11) = κ < ∞, and let J = sign (I − T 2

11). Then the completion problem for
A0± in (26) has a solution I ± T for some T = T ∗ with ν−(I − T 2) = κ if and only
if the following condition is satisfied:

ν−(I − T 2
11) = ν−(I − T ∗

1 T1). (28)

If this condition is satisfied then the following facts hold:

(i) The completion problems for A0± in (26) have minimal solutions A±.
(ii) The operators Tm := A+ − I and TM := I − A− ∈ Ext T1,κ (−1, 1).
(iii) The operators Tm and TM have the block forms

Tm =
(

T11 DT11V
∗

V DT11 −I + V (I − T11)JV ∗
)

,

TM =
(

T11 DT11V
∗

V DT11 I − V (I + T11)JV ∗
)

,

(29)

where DT11 := |I − T 2
11|1/2 and V is given by V := clos (T21D

[−1]
T11

).
(iv) The operators Tm and TM are extremal extensions of T1:

T ∈ Ext T1,κ (−1, 1) iff T = T ∗ ∈ [H], Tm ≤ T ≤ TM . (30)

(v) The operators Tm and TM are connected via

(−T )m = −TM , (−T )M = −Tm . (31)

Proof It is easy to see that κ = ν−(I−T 2
11) ≤ ν−(I−T ∗

1 T1) ≤ ν−(I−T 2). Hence the
condition ν−(I−T 2) = κ implies (28). The sufficiency of this condition is established
while proving the assertions (i)–(iii) below. (i) If the condition (28) is satisfied then
ran T ∗

21 ⊂ ran |I − T 2
11|1/2 by Lemma 2. In fact, this inclusion is equivalent to the

inclusions ran T ∗
21 ⊂ ran |I ± T11|1/2, which by Theorem 1 means that both of the

completion problems, A0± in (26), are solvable. Consequently, the following operators

S− = |I + T11|[−1/2]T ∗
21, S+ = |I − T11|[−1/2]T ∗

21 (32)
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arewell defined and they provide theminimal solutions A± to the completion problems
for A0± in (26). Notice that the assumption that there is a simultaneous solution I ± T
with a single selfadjoint operator T is not yet used here.

(ii) & (iii) Proof of (i) shows that the inclusion ran T ∗
21 ⊂ ran |I − T 2

11|1/2 holds.
This last inclusion alone is equivalent to the existence of a (unique) bounded operator
V ∗ = D[−1]

T11
T ∗
21 with ker V ⊃ ker DT11 , such that T ∗

21 = DT11V
∗. The operators

Tm := A+ − I and TM := I − A− (see proof of (i)) can be now rewritten as in (29).
Observe that

S∓ = |I ± T11|[−1/2]DT11V
∗ = P∓|I ∓ T11|1/2V ∗ = |I ∓ T11|1/2P∓V ∗,

where P∓ are the orthogonal projections onto

(ker |I ± T11|1/2)⊥ = (ker |I ± T11|)⊥ = ran |I ± T11| = ran |I ± T11|1/2.

Since ker V ⊃ ker DT11 implies ran V ∗ ⊂ ran DT11 ⊂ ran |I ± T11|1/2, it follows that

S− = |I − T11|1/2V ∗, S+ = |I + T11|1/2V ∗.

Consequently, see (25),

S∗− J−S− = V |I − T11|1/2 J−|I − T11|1/2V ∗ = V (I − T11)JV
∗,

S∗+ J+S+ = V |I + T11|1/2 J+|I + T11|1/2V ∗ = V (I + T11)JV
∗,

which implies the representations for Tm and TM in (29). Clearly, Tm and TM are
selfadjoint extensions of T1, which satisfy the equalities

ν−(I + Tm) = κ−, ν−(I − TM ) = κ+.

Moreover, it follows from (29) that

TM − Tm =
(

0 0
0 2(I − V JV ∗)

)

. (33)

Now the assumption (28) will be used again. Since ν−(I − T ∗
1 T1) = ν−(I − T 2

11)

and T21 = V DT11 it follows from Lemma 2 that V ∗ ∈ [H2,DT11 ] is J -contractive:
I −V JV ∗ ≥ 0. Therefore, (33) shows that TM ≥ Tm and I +TM ≥ I +Tm and hence,
in addition to I + Tm , also I + TM is a solution to the problem A0+ and, in particular,
ν−(I+TM ) = κ− = ν−(I+Tm). Similarly, I−TM ≤ I−Tm which implies that I−Tm
is also a solution to the problem A0−, in particular, ν−(I − Tm) = κ+ = ν−(I − TM ).
Now by applying Lemma 5 we get

ν−(I − T 2
m) = ν−(I − Tm) + ν−(I + Tm) = κ+ + κ− = κ,

ν−(I − T 2
M ) = ν−(I − TM ) + ν−(I + TM ) = κ+ + κ− = κ.
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Therefore, Tm, TM ∈ Ext T1,κ (−1, 1) which in particular proves that the condition
(28) is sufficient for solvability of the completion problem (26).

(iv) Observe, that T ∈ Ext T1,κ (−1, 1) if and only if T = T ∗ ⊃ T1 and ν−(I±T ) =
κ∓. By Theorem 1 this is equivalent to

S∗− J−S− − I ≤ T22 ≤ I − S∗+ J+S+. (34)

The inequalities (34) are equivalent to (30).
(v) The relations (31) follow from (32) and (29).

For aHilbert space contraction T1 one has ν−(I−T 2
11) ≤ ν−(I−T ∗

1 T1) = 0, i.e., the
criterion (28) is automatically satisfied. In this case Theorem 5 has been proved in [39].
As Theorem 5 shows, under the minimal index condition ν−(I − T 2) = ν−(I − T 2

11),
the solution set Ext T1,κ (−1, 1) admits the same attractive description as an operator
interval determined by the two extreme extensions Tm and TM as was originally proved
by Kreı̆n in his paper [47] when describing all contractive selfadjoint extensions of
a Hilbert space contraction. In particular, Theorem 5 shows that if there is a solution
to the completion problem (26), i.e. if T1 satisfies the index condition (28), then all
selfadjoint extensions T of T1 satisfying the equality ν−(I − T 2) = ν−(I − T ∗

1 T1)
are determined by the operator inequalities Tm ≤ T ≤ TM . The original paper [47] of
M. G. Kreı̆n has never been translated: for some literature in English where many of
the original ideas of Kreı̆n have been presented we refer to the monographs [1,9,51]
and the papers [11,39].

The original proof of Kreı̆n in [47] for the description of all contractive selfadjoint
extensions of a Hilbert space contraction T1 as the operator interval in (30) was based
on the notion of shortening or shorted operator; cf. (1). To get this result Kreı̆n first
constructed one contractive selfadjoint extension T for T1 and then used it together
with the following two formulas involving shortening of I + T and I − T to the
subspace N = H � dom T1 = H2:

Tm = T − (I + T )N, TM = T + (I − T )N,

see [47, Theorem 3]. It follows from Theorem 1, see also (10), and the formulas for Tm
and TM in Theorem 5 that these descriptions of Tm and TM remain true in the present
setting: indeed, using the given block formulas one can directly check that

I + T = I + Tm + (I + T )N, I − T = I − TM + (I − T )N,

where the shortening is calculated as defined in (17).
Notice that T belongs to the solution set Ext T1,κ (−1, 1) precisely when T = T ∗ ⊃

T1 and ν−(I ± T ) = κ∓. This means that every selfadjoint extension of T1 for which
(I − T 2) = ν−(I − T ∗

1 T1) admits precisely κ− eigenvalues on the interval (−∞,−1)
and κ+ eigenvalues on the interval (1,∞); in total there are κ = κ− + κ+ eigenvalues
outside the closed interval [−1, 1]. The fact that the numbers κ∓ = ν−(I ± T ) are
constant in the solution set Ext T1,κ (−1, 1) is crucial for dealing properly with the
Cayley transforms in the next section.
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6 A generalization of M. G. Kreı̆n’s approach to the extension theory
of nonnegative operators

6.1 Some antitonicity theorems for selfadjoint relations

The notion of inertia of a selfadjoint relation in a Hilbert space is defined by means
of its associated spectral measure. In what follows the Hilbert space is assumed to be
separable.

Definition 1 Let H be a selfadjoint relation in a separableHilbert spaceH and let Et (·)
be the spectral measure of H . The inertia of H is defined as the ordered quadruplet
i(H) = {i+(H), i−(H), i0(H), i∞(H)}, where

i+(H) = dim ran Et ((0,∞)), i−(H) = dim ran Et ((−∞, 0)),

i0(H) = dim ker H, i∞(H) = dimmul H.

In particular, for a selfadjoint relation H in C
n , the quadruplet i(H) consists of the

numbers of positive, negative, zero, and infinite eigenvalues of H ; cf. [15]. Hence, if
H is a selfadjoint matrix in Cn , then i∞(H) = 0 and the remaining numbers make up
the usual inertia of H .

The following theorem characterizes the validity of the implication

H1 ≤ H2 ⇒ H−1
2 ≤ H−1

1

for a pair of bounded selfadjoint operators H1 and H2 having bounded inverses; in
the infinite dimensional case it has been proved independently in [30,40,61]; cf. also
[41]. Some extensions of this result, where the condition min{i+2 , i−1 } < ∞ is relaxed,
are also contained in [40,41,61].

Theorem 6 Let H1 and H2 be bounded and boundedly invertible selfadjoint operators
in a separable Hilbert space H. Let i(Hj ) = {i+j , i−j , i0j , i

∞
j } be the inertia of Hj ,

j = 1, 2, and assume that min{i+2 , i−1 } < ∞ and that H1 ≤ H2. Then

H−1
2 ≤ H−1

1 if and only if i(H1) = i(H2).

Very recently two extensions of Theorem 6 have been established in [15] for a gen-
eral pair of selfadjoint operators and relations without any invertibility assumptions.
For the present purposes we need the second main antitonicity theorem from [15],
which reads as follows.

Theorem 7 Let H1 and H2 be selfadjoint relations in a separable Hilbert space H
which are semibounded from below. Let i(Hj ) = {i+j , i−j , i0j , i

∞
j } be the inertia of Hj ,

j = 1, 2, and assume that i−1 < ∞ and that H1 ≤ H2. Then

H−1
2 ≤ H−1

1 if and only if i−1 = i−2 .
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The ordering appearing in Theorem 7 is defined via

H1 ≤ H2 ⇔ 0 ≤ (H2 − aI )−1 ≤ (H1 − aI )−1,

where a < min{μ(H1), μ(H2)} is fixed and μ(Hi ) ∈ R stands for the lower bound
of Hi , i = 1, 2. Notice that the conditions H1 ≤ H2 and i−1 < ∞ imply i−2 < ∞;
in particular these conditions already imply that the inverses H−1

1 and H−1
2 are also

semibounded from below. For further facts on ordering of semibounded selfadjoint
operators and relations the reader is referred to [15,42].

6.2 Cayley transforms

Define the linear fractional transformation C, taking a linear relation A into a linear
relation C(A), by

C(A) = { { f + f ′, f − f ′} : ̂f = { f, f ′} ∈ A } = −I + 2(I + A)−1. (35)

Clearly, Cmaps the (closed) linear relations one-to-one onto themselves, C2 = I , and

C(A)−1 = C(−A), (36)

for every linear relation A. Moreover,

dom C(A) = ran (I + A), ran C(A) = ran (I − A),

ker (C(A) − I ) = ker A, ker (C(A) + I ) = mul A.

In addition, C preserves closures, adjoints, componentwise sums, orthogonal sums,
intersections, and inclusions. The relation C(A) is symmetric if and only if A is sym-
metric. It follows from (35) and

‖ f + f ′‖2 − ‖ f − f ′‖2 = 4Re ( f ′, f ) (37)

that C gives a one-to-one correspondence between nonnegative (selfadjoint) linear
relations and symmetric (respectively, selfadjoint) contractions. Observe the following
mapping properties of C on the extended real line R ∪ {±∞}:

C([0, 1]) = [0, 1]; C([−1, 0]) = [1,+∞];
C([1,+∞]) = [−1, 0]; C([−∞,−1]) = [−∞,−1]. (38)

If H is a selfadjoint relation then

i−(I + H) = i−(C(H) + I ), i−(I − H) = i−(C(H)−1 + I ),
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and hence

σ(H) ∩ (−∞,−1) = σ(C(H)) ∩ (−∞,−1),

σ (H) ∩ (1,+∞) = σ(C(H)−1) ∩ (−∞,−1) = σ(C(H)) ∩ (−1, 0); (39)

which can also be seen from (38).

6.3 M. G. Kreı̆n’s approach to the extension theory with a minimal negative
index

InM.G.Kreı̆n’s approach to the extension theory of nonnegative operators the idea is to
make a connection to the selfadjoint contractive extensions of a hermitian contraction
T via the Cayley transform in (35). The extension of this approach to the present
indefinite situation is based on the fact that the Cayley transform still reverses the
orderingof selfadjoint extensions due to the antitonicity result formulated inTheorem7
and the fact that in Theorem 5 T ∈ Ext T1,κ (−1, 1) if and only if T = T ∗ ⊃ T1 and
ν−(I ± T ) = κ∓.

A semibounded symmetric relation A is said to be quasi-nonnegative if the associ-
ated form a( f, f ) := ( f ′, f ), { f, f ′} ∈ A, has a finite number of negative squares, i.e.
every A-negative subspace L ⊂ dom A is finite dimensional. If the maximal dimen-
sion of A-negative subspaces is finite and equal to κ ∈ Z+, then A is said to be
κ-nonnegative; the more precise notations ν−(a), ν−(A) are used to indicate the max-
imal number of negative squares of the form a and the relation A, respectively; here
ν−(a) = ν−(A). A selfadjoint extension ˜A of A is said to be a κ-nonnegative extension
of A if ν−(˜A) = κ . The set of all such extension will be denoted by Ext A,κ (0,∞).

If A is a closed symmetric relation in the Hilbert space H with κ−(A) < ∞, then
the subspace H1 := ran (I + A) is closed, since the Cayley transform T1 = C(A) is a
closed bounded symmetric operator inHwith dom T1 = H1. Let P1 be the orthogonal
projection onto H1 and let P2 = I − P1. Then the form

a1( f, f ) := (P1 f
′, f ), { f, f ′} ∈ A, (40)

is symmetric and it has a finite number of negative squares.

Lemma 6 Let A be a closed symmetric relation in H with κ−(A) < ∞ and let
T1 = C(A). Then the form a1 is given by

a1( f, f ) = a( f, f ) + ‖P2 f ‖2 (41)

with ν−(a1) ≤ ν−(A). Moreover,

4a1( f, f ) = ‖g‖2 − ‖T11g‖2, 4a( f, f ) = ‖g‖2 − ‖T1g‖2,

where { f, f ′} ∈ A, g = f + f ′, and T11 = P1T1. In addition, T21 = P2T1 satisfies
‖T21g‖2 = ‖P2 f ‖ = −(P2 f, f ′).
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Proof The formula (37) shows that if T1 = C(A) and { f, f ′} ∈ A, then

‖g‖2 − ‖T1g‖2 = 4( f ′, f ) = 4a( f, f ), g = f + f ′ ∈ dom T1 = H1.

Moreover, T21g = P2( f − f ′) = 2P2 f = −2P2 f ′ gives (P2 f ′, f ) = −‖P2 f ‖2
and

‖T21g‖2 = −4(P2 f
′, P2 f ) = −4(P2 f

′, f ).

In particular, (41) follows from

a( f, f ) = (P1 f
′, f ) + (P2 f

′, f ) = a1( f, f ) − ‖P2 f ‖2.

Finally, (41) combined with ‖T21g‖2 = 4‖P2 f ‖2 leads to

4a1( f, f ) = ‖g‖2 − ‖T1g‖2 + ‖T21g‖2 = ‖g‖2 − ‖T11g‖2.

The main result in this section concerns the existence and a description of all
selfadjoint extensions ˜A of a symmetric relation A for which ν−(˜A) < ∞ attains the
minimal value ν−(a1). A criterion for the existence of such a selfadjoint extension
is established, in which case all such extensions are described in a manner that is
familiar from the case of nonnegative operators. To formulate the result assume that
the selfadjoint quasi-contractive extensions Tm and TM of T1 as in Theorem 5 exist,
and denote the corresponding selfadjoint relations AF and AK by

AF = X (Tm) = −I + 2(I + Tm)−1, AK = X (TM ) = −I + 2(I + TM )−1. (42)

Theorem 8 Let A be a closed symmetric relation in H with ν−(A) < ∞ and denote
κ = ν−(a1) (≤ ν−(A)), where a1 is given by (40). Then Ext A,κ (0,∞) is nonempty if
and only if ν−(A) = κ . In this case AF and AK are well defined and they belong to
Ext A,κ (0,∞). Moreover, the formula

˜A = −I + 2(I + T )−1 (43)

gives a bijective correspondence between the quasi-contractive selfadjoint extensions
T ∈ Ext T1,κ (−1, 1) of T1 and the selfadjoint extensions ˜A = ˜A∗ ∈ Ext A,κ (0,∞) of
A. Furthermore, ˜A = ˜A∗ ∈ Ext A,κ (0,∞) precisely when

AK ≤ ˜A ≤ AF , (44)

or equivalently, when A−1
F ≤ ˜A−1 ≤ A−1

K , or

(AF + I )−1 ≤ (˜A + I )−1 ≤ (AK + I )−1. (45)
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The set Ext A−1,κ (0,∞) is also nonempty and ˜A ∈ Ext A,κ (0,∞) if and only if ˜A−1 ∈
Ext A−1,κ (0,∞). The extreme selfadjoint extensions AF and AK of A are connected
to those of A−1 via

(A−1)F = (AK )−1, (A−1)K = (AF )−1. (46)

Proof Since ν−(A) < ∞, the Cayley transform T1 = C(A) defines a bounded sym-
metric operator in H with H1 = dom T1 = ran (I + A). It follows from Lemma 6
that

ν−(A) = ν−(a) = ν−(I − T ∗
1 T1), ν−(a1) = ν−(I − T 2

11),

and therefore the condition ν−(A) = κ is equivalent to solvability criterion (28) in
Theorem 5. Moreover, ˜A is a selfadjoint extension of A if and only if T = C(˜A)

is selfadjoint extension of T1 and by Lemma 6 the equality ν−(˜A) = ν−(I − T 2)

holds. Therefore, it follows from Theorem 5 that the set Ext A,κ (0,∞) is nonempty
if and only if ν−(A) = κ and in this case the formula (43) establishes a one-to-one
correspondence between the sets Ext A,κ (0,∞) and Ext T1,κ (−1, 1).

Next the characterizations (44) and (45) for the set Ext A,κ (0,∞) are established.
Let ˜A ∈ Ext A,κ (0,∞) and let T = C(˜A). According to Theorem 7 T = C(˜A) ∈
Ext T1,κ (−1, 1) if and only if T satisfies the inequalities Tm ≤ T ≤ TM . It is clear
from the formulas (42) and (43) that the inequalities I + Tm ≤ I + T ≤ I + TM are
equivalent to the inequalities (45).

On the other hand, ν−(I − T 2
11) = ν−(I − T 2) and hence the indices κ+ = ν−(I −

T11) = ν−(I − T ) and κ− = ν−(I + T11) = ν−(I + T ) do not depend on T = C(˜A);
cf. (25). The mapping properties (39) of the Cayley transform imply that the number
of eigenvalues of ˜A on the open intervals (−∞,−1) and (−1, 0) are also constant and
equal to κ− and κ+, respectively. In particular, since κ− = ν−(I + T ) is constant we
can apply Theorem 6 to conclude that the inequalities I + Tm ≤ I + T ≤ I + TM are
equivalent to

(I + TM )−1 ≤ (I + T )−1 ≤ (I + Tm)−1,

which due to the formulas (42) and (43) can be rewritten as AF + I ≤ ˜A+ I ≤ AK + I ,
or as AF ≤ ˜A ≤ AK . This proves (44). Since ν−(˜A) = κ = κ− + κ+ is also constant,
an application of Theorem 7 shows that the inequalities (44) are also equivalent to
A−1
F ≤ ˜A−1 ≤ A−1

K .
As to the inverse A−1, notice that ν−(A−1) = ν−(A). Moreover, since A−1 =

C(−T1) it is clear that ran (I + A−1) = dom T1 and thus the form associated to A−1

via (40) satisfies a(−1)
1 ( f ′, f ′) = (P1 f, f ′) = (P1 f ′, f ) = a1( f, f ). In particular,

ν−(a(−1)
1 ) = ν−(a1). Moreover, it is clear that ν−(A−1) = ν−(A). Consequently,

the equality ν−(A) = ν−(a1) is equivalent to the equality ν−(A(−1)) = ν−(a(−1)
1 ).

Furthermore, it is clear that ˜A ∈ Ext A,κ (0,∞) if and only if ˜A−1 ∈ Ext A−1,κ (0,∞).
Finally, the relations (46) are obtained from (31), (36), and (42).
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It follows from Theorem 8 that the extensions ˜A ∈ Ext A,κ (0,∞) admit a uniform
lower bound μ ≤ μ(˜A) (μ ≤ 0). This leads to the following inequalities for the
resolvents.

Corollary 4 With the assumptions as in Theorem 8 let ν−(a1) = ν−(A) < ∞ and
μ ≤ 0 be a uniform lower bound for the extensions ˜A ∈ Ext A,κ (0,∞). Then the
resolvents of these extensions satisfy the inequalities

(AF + a)−1 ≤ (˜A + a)−1 ≤ (AK + a)−1, a > −μ. (47)

Proof Let T = C(˜A) ∈ Ext T1,κ (−1, 1) be the Cayley transform of the extension
˜A ∈ Ext A,κ (0,∞) and rewrite the resolvent of ˜A in the form

(˜A + a)−1 = 1

a − 1
I − 2

(a − 1)2

(

T + a + 1

a − 1

)−1

.

Since −a < μ ≤ μ(˜A), T admits precisely κ− eigenvalues below the number
−(a + 1)/(a − 1) < −1. Therefore the inequalities Tm ≤ T ≤ TM in Theorem 5
or, equivalently, the inequalities

Tm + a + 1

a − 1
≤ T + a + 1

a − 1
≤ TM + a + 1

a − 1

imply the inequalities (47) by Theorem 6.

The antitonicity Theorems 6, 7 can be also used as follows. If the inequalities (44)
and A−1

F ≤ ˜A−1 ≤ A−1
K hold, then κ = ν−(˜A) = ν−(AK ) = ν−(AF ) is constant.

If, in addition, (45) is satisfied, then it follows from (44) that κ− = ν−(I + ˜A) =
ν−(I +AK ) = ν−(I +AF ) is constant, so that also κ+ = ν−(I − ˜A) = ν−(I −AK ) =
ν−(I − AF ) is constant. However, in this case the equality ν−(a1) = ν−(A) need not
hold and there can also be selfadjoint extensions ˜A of A with

ν−(˜A) = ν−(AK ) = ν−(AF ) > ν−(A) ≥ ν−(a1),

which neither satisfy the inequalities (44) and (45), nor the equalities ν−(I + ˜A) = κ−
and ν−(I − ˜A) = κ+. It is emphasized that the result in Theorem 8 characterizes
all selfadjoint extensions in Ext A,κ (0,∞) under the minimal index condition κ =
ν−(a1) = ν−(A).

In the case that A is nonnegative one has automatically κ = ν−(a1) = ν−(A) = 0.
Therefore, Theorem 8 is a precise generalization of the well-known characterization
of the class Ext A(0,∞) (with κ = 0) due to M. G. Kreı̆n [47] to the case of a finite
negative (minimal) index κ > 0. The selfadjoint extensions AF and AK of A are called
the Friedrichs (hard) and the Kreı̆n–von Neumann (soft) extension, respectively; these
notions go back to [36,56]. The extremal properties (47) of the Friedrichs and Kreı̆n–
von Neumann extensions were discovered by Kreı̆n [47] in the case when A is a
densely defined nonnegative operator. The case when A ≥ 0 is not densely defined
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was considered by Ando and Nishio [5], and Coddington and de Snoo [22]. In the
nonnegative case the formulas (46) can be found in [5,22]. Notice that in view of
(43) and (44) the minimal solution of the completion problem for a nonnegative block
operator A0 can be also interpreted by means of the Kreı̆n–von Neumann extension
of the first column col (A11, A21) in (2); cf. [7, Section 4], [39, Section 4.9].

6.4 Kreı̆n’s uniqueness criterion

To establish a generalization of Kreı̆n’s uniqueness criterion for the equality AF = AK

in Theorem 8, i.e., for Ext A,κ (0,∞) to consists only of one extension, we first derive
some general facts on J -contractions by means of their commutation properties.

Let H1 and H2 be Hilbert spaces with symmetries J1 and J2, respectively, and let
T ∈ [H1,H2] be a J -contraction, i.e., J1 − T ∗ J2T ≥ 0. Let DT and DT ∗ be the
corresponding defect operators and let JT and JT ∗ be their signature operators as
defined in Sect. 4. The first lemma connects the kernels of the defect operators DT and
DT ∗ .

Lemma 7 Let T ∈ [H1,H2], let Ji be a symmetry in Hi , i = 1, 2, and let DT and
DT ∗ be the defect operators of T and T ∗, respectively. Then

J2T (ker DT ) = ker DT ∗ , T ∗ J2(ker DT ∗) = ker DT . (48)

In particular,

ker DT = {0} if and only if ker DT ∗ = {0}.

Proof It suffices to show the first identity in (48). If ϕ ∈ ker DT = ker JT D2
T , then

the second identity in (19) implies that J2Tϕ ∈ ker JT ∗ D2
T ∗ = ker DT ∗ . Hence,

J2T (ker DT ) ⊂ ker DT ∗ . Conversely, let ϕ ∈ ker DT ∗ . Then 0 = JT ∗ D2
T ∗ϕ or,

equivalently, ϕ = J2T J1T ∗ϕ, and here J1T ∗ϕ ∈ ker DT by the first identity in (19).
This proves the reverse inclusion.

Lemma 8 Let the notations be as in Lemma 7. Then

ran T ∩ ran DT ∗ = ran T J1DT = ran DT ∗LT ,

where LT is the link operator defined in Corollary 2.

Proof By the commutation formulas in Corollary 2 we have ran T J1DT =
ran DT ∗LT ⊂ ran T ∩ ran DT ∗ . Hence, it suffices to prove the inclusion

ran T ∩ ran DT ∗ ⊂ ran T J1DT .

Suppose that ϕ ∈ ran T ∩ ran DT ∗ . Then Corollary 2 shows that T ∗ J2ϕ = DT f for
some f ∈ DT , while the second identity in (19) implies that

(J2 − T J1T
∗)J2ϕ = T J1DT g,
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for some g ∈ DT . Therefore,

ϕ = (J2 − T J1T
∗)J2ϕ + T J1T

∗ J2ϕ = T J1DT g + T J1DT f = T J1DT (g + f )

and this completes the proof.

We can now characterize J -isometric operators T ∈ [H1,H2] as follows.
Proposition 3 With the notations as in Lemma 7 the following statements are equiv-
alent:

(i) T is J -isometric, i.e., T ∗ J2T = J1;
(ii) ker T = {0} and ran T ∩ ran DT ∗ = {0};
(iii) for some, and equivalently for every, subspace L with ran J2T ⊂ L one has

sup
f ∈L

|( f, Tϕ)|
‖DT ∗ f ‖ = ∞ for every ϕ ∈ H1\{0}, (49)

i.e., there is no constant 0 ≤ C < ∞ satisfying |( f, Tϕ)| ≤ C‖DT ∗ f ‖ for every
f ∈ L, if ϕ �= 0.

Proof (i) ⇒ (iii) Let L be an arbitrary subspace with ran J2T ⊂ L. Assume that the
supremum in (49) is finite for some ϕ = J1ψ ∈ H1. Then there exists 0 ≤ C < ∞,
such that

|( f, T J1ψ)| ≤ C‖DT ∗ f ‖ for every f ∈ L.

Since ran J2T ⊂ L and T is J -isometric, also the following inequality holds:

‖ψ‖2 = (J1T
∗ J2Tψ,ψ) ≤ C‖DT ∗ J2Tψ‖. (50)

By taking adjoints (and zero extension for LT ∗) in the second identity in Corollary 2 it
is seen that DT ∗ J2Tψ = L∗

T ∗ DTψ = 0, since T is J -isometric. Hence (50) implies
ϕ = J1ψ = 0. Therefore (49) holds for every ϕ �= 0.

(iii) ⇒ (ii) Assume that (49) is satisfied with some subspace L. If (ii) does not
hold, then either ker T �= {0}, in which case (49) does not hold for 0 �= ϕ ∈ ker T , or
ran T ∩ ran DT ∗ �= {0}. However, then with 0 �= Tϕ = DT ∗h the supremum in (49)
is finite even if f varies over the whole space H2. Thus, if (ii) does not hold then (49)
fails to be true.

(ii)⇒ (i) Let ran T ∩ ran DT ∗ = {0}. Then by Lemma 8 one has T J1DT = 0 and it
follows from ker T = {0} that DT = 0, i.e., T is isometric. This completes the proof.

After these preparations we are ready to prove the analog of Kreı̆n’s uniqueness
criterion for the equality Tm = TM in the case of quasi-contractions appearing in
Theorem 5.

123

Acta Wasaensia 47



1446 D. Baidiuk, S. Hassi

Theorem 9 Let the Hilbert space H be decomposed as H = H1 ⊕ H2 and let T1 ∈
[H1,H] be a symmetric quasi-contraction satisfying the condition (28) in Theorem 5.
Then Tm = TM if and only if

sup
f ∈H1

|(T1 f, ϕ)|2
(|I − T ∗

1 T1| f, f )
= ∞ for every ϕ ∈ H2\{0}. (51)

Proof Let J = sign (I − T 2
11). According to Theorem 5 there is V ∈ [DT11 ,H2], such

that T21 = V DT11 ; moreover, V ∗ is a J -contraction, i.e., I −V JV ∗ ≥ 0. This implies
that

(T1 f, ϕ) = (T21 f, ϕ) = (DT11 f, V
∗ϕ), (52)

and a direct calculation shows that

I−T ∗
1 T1 = I−T 2

11−T ∗
21T21 = J D2

T11−DT11V
∗V DT11 = DT11DV JV DV DT11 . (53)

By construction DV ∈ [DT11] and therefore ran DV DT11 is dense in DV = ran DV .
Furthermore, since V ∗ is J -contractive it follows from Lemma 1 that ν−(JV ) =
ν−(J ) = ν−(I − T 2

11) and, therefore, the assumption (28) shows that ν−(JV ) =
ν−(I − T ∗

1 T1). Now according to Proposition 1 (ii) if follows from (53) that there is
a unique J -unitary operator C ∈ [DT1,DV ] such that DV DT11 = CDT1 .

In view of (33) Tm = TM if and only if V ∗ is J -isometric. Since ran JV ∗ ⊂
ran DT11 , it follows from (i) and (iii) in Proposition 3 that T := V ∗ satisfies the
condition (49) with L = ran DT11 .

On the other hand, it follows from (53) and J -unitarity of C ∈ [DT1,DV ] that

‖DV DT11‖ ≤ ‖C‖ ‖DT1‖, ‖DT1‖ ≤ ‖C−1‖ ‖DV DT11‖.

By combining this equivalence between the norms of ‖DT1‖ and ‖DV DT11‖ with the
equality (52) one concludes that V ∗ satisfies the condition (49) precisely when T1
satisfies the condition (51).

Remark 3 In the case of a hermitian contraction acting in a Hilbert space the criterion
in Theorem 9 was proved by Kreı̆n [47].

As to the geometric interpretation of the condition in Theorem 9, observe that if
the supremum (51) is finite for some ϕ, then T ∗

21ϕ ∈ ran DT1 (see e.g. [38, Corol-
lary 2]) and as the proof shows DT1 = DT11DVC−∗, which gives the equation
DT11V

∗ϕ = DT11DVC−∗v for some v. Consequently, V ∗ϕ = DVC−∗v and hence
again an application of Proposition 3 to V ∗, now using items (i) and (ii), shows that
(51) is equivalent to V ∗ being J -isometric. Here (see (33))

TM − Tm =
(

0 0
0 2(I − V JV ∗)

)

.

Recall that the minimal and maximal extension Tm and TM of T1 are determined
via the minimal solutions A+ = I + Tm = S∗− J−S− and A− = I − TM = S∗+ J+S+
to the completion problems (26), where
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S− = |I + T11|[−1/2]T ∗
21, S+ = |I − T11|[−1/2]T ∗

21.

Here Qm := S∗− J−S− = V (I − T11)JV ∗ and QM := S∗+ J+S+ = V (I + T11)JV ∗
appear when calculating the generalized Schur complements of the block operators
A+ and A− using proper range inclusions; see Proposition 2 and (17). These two
operators can be expressed either by limit values or by integrals as follows:

Qm = T21(I + T11)
(−1)T ∗

21 := lim
ε↑1 T21(I + εT11)

−1T ∗
21 =

∫ ‖T11‖

−‖T11‖
T21dEt T ∗

21

1 + t
,

QM = T21(I − T11)
(−1)T ∗

21 := lim
ε↑1 T21(I − εT11)

−1T ∗
21 =

∫ ‖T11‖

−‖T11‖
T21dEt T ∗

21

1 − t
,

where ε is sufficiently close to 1 (to guarantee proper invertibility of indicated inverses)
and Et stands for the spectral family of T11.With these notations the equality Tm = TM
can be also rewritten in the form Qm − I = I − QM , i.e. 2I = Qm + QM = 2V JV ∗
or, equivalently,

∫ ‖T11‖

−‖T11‖
T21dEt T ∗

21

1 − t2
= I. (54)

In the special case of finite defect numbers (dim (dom T1)⊥ < ∞) the condition (54)
appears in Langer and Textorius [53, Theorem2.8]. Notice, that using the factorization
T21 = V DT11 and the formula I − T 2

11 = J DT 2
11
the condition (54) can immediately

be rewritten in the form V JV ∗ = I .

The criterion in Theorem 9 can be translated to the situation of Theorem 8 via
Cayley transform to get the analog of Kreı̆n’s uniqueness criterion for the equality
AF = AK .

Corollary 5 Let A be a closed symmetric relation in H satisfying the condition
ν−(A) = ν−(a1) < ∞ in Theorem 8. Then the equality AF = AK holds if and
only if the following condition is fulfilled:

sup
g∈H1

|((A + I )−1g, ϕ)|2
(|̂A|g, g) = ∞ for every ϕ ∈ ker (A∗ + I )\{0}, (55)

where ̂A = (I + A)−∗A(I + A)−1 is a bounded selfadjoint operator in H1 = ran
(A + I ).

Proof Let T1 = C(A) so that { f, f ′} ∈ A if and only if { f + f ′, 2 f } ∈ T1 + I ; see
(35). Then with g = f + f ′ ∈ dom T1 = H1 and ϕ ∈ H2 = (dom T1)⊥ one has

(T1g, ϕ) = ((T1 + I )g, ϕ) = 2((A + I )−1g, ϕ).
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Let As = Ps A be the operator part of A; here Ps stands for the orthogonal projection
ontomul A = (dom A∗)⊥ = ker (T1+ I ). Then the form a( f, f ) = ( f ′, f ) associated
with A can be rewritten as a( f, f ) = (As f, f ), f ∈ dom A, and thus

((I − T ∗
1 T1)g, g) = 4( f ′, f ) = 4(As(I + A)−1g, (I + A)−1g)),

where 2(I + A)−1 = T1 + I is a bounded operator from H1 into H. Then clearly
̂A = (I + A)−∗As(I + A)−1 is a bounded selfadjoint operator in H1 and, moreover,
ν−(̂A) = ν−(a) = ν−(I − T ∗

1 T1); see Lemma 6. Thus, it follows from Proposition
1 that there is a J -unitary operator C from ran ̂A into DT1 such that DT1 = C |̂A|1/2.
As in the proof of Theorem 8 this implies the equivalence of the conditions (51) and
(55).

Observe that if A is nonnegative then with { f, f ′} ∈ A and g = f + f ′ ∈ H1,

((A + I )−1g, ϕ) = ( f, ϕ), (As(I + A)−1g, (I + A)−1g)) = (As f, f ),

and, therefore, in this case the condition (55) can be rewritten as

sup
{ f, f ′}∈A

|( f, ϕ)|2
( f ′, f )

= ∞ for every ϕ ∈ ker (A∗ + I )\{0},

the criterion which for a densely defined operator A was obtained in [47] and for a
nonnegative relation A can be found in [38,39].
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Completion of operators in Krĕın spaces

Dmytro Baidiuk

Abstract. A generalization of the well-known results of M.G. Krĕın
about the description of selfadjoint contractive extension of a hermit-
ian contraction is obtained. This generalization concerns the situation,

where the selfadjoint operator A and extensions Ã belong to a Krĕın
space or a Pontryagin space and their defect operators are allowed to
have a fixed number of negative eigenvalues. Also a result of Yu.L.
Shmul’yan on completions of nonnegative block operators is general-
ized for block operators with a fixed number of negative eigenvalues in
a Krĕın space.

This paper is a natural continuation of S. Hassi’s and author’s
recent paper [5].

Mathematics Subject Classification (2010). Primary 46C20, 47A20, 47A63;
Secondary 47B25.
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spaces.

1. Introduction

In 1947 M.G. Krĕın published one of his famous papers [17] on a description of
a nonnegative selfadjoint extensions of a densely defined nonnegative operator

A in a Hilbert space. Namely, all nonnegative selfadjoint extensions Ã of A
can be characterized by the following two inequalities:

(AF + a)−1 ≤ (Ã+ a)−1 ≤ (AK + a)−1, a > 0,

where the Friedrichs (hard) extension AF and the Krĕın-von Neumann (soft)
extension AK of A. He proved these results by transforming the problems the
study of contractive operators.

The first result of the present paper is a generalization of a result due
to Shmul’yan [19] on completions of nonnegative block operators where the
result was applied for introducing so-called Hellinger operator integrals. This
result was extended in [5] for block operators in a Hilbert space by allowing
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a fixed number of negative eigenvalues. In Section 2 this result is further
extended to block operators which act in a Krĕın space.

In paper [5] we studied classes of “quasi-contractive” symmetric opera-
tors T1 allowing a finite number of negative eigenvalues for the associated de-
fect operator I−T ∗1 T1, i.e., ν−(I−T ∗1 T1) <∞ as well as “quasi-nonnegative”
operators A with ν−(A) <∞ and the existence and description of all possi-

ble selfadjoint extensions T and Ã of them which preserve the given negative

indices ν−(I − T 2) = ν−(I − T ∗1 T1) and ν−(Ã) = ν−(A), and proved precise
analogs of the above mentioned results of M.G. Krĕın under a minimality
condition on the negative indices ν−(I − T ∗1 T1) and ν−(A), respectively. It
was an unexpected fact that when there is a solution then the solution set
still contains a minimal solution and a maximal solution which then describe
the whole solution set via two operator inequalities, just as in the origi-
nal paper of M.G. Krĕın. In this paper analogous results are established for
”quasi-contractive” operators acting in a Krĕın space; see Theorems 4.2, 5.7.

In Section 4 a first Krĕın space analog of completion problem is for-
mulated and a description of its solutions is found. Namely, we consider
classes of ”quasi-contractive” symmetric operators T1 in a Krĕın space with
ν−(I − T ∗1 T1) < ∞ and we describe all possible selfadjoint (in the Krĕın
space sense) extensions T of T1 which preserve the given negative index
ν−(I − T ∗T ) = ν−(I − T ∗1 T1). This problem is close to the completion prob-
lem studied in [5] and has a similar description for its solutions. For further
history behind this problem see also [1, 2, 3, 7, 8, 9, 10, 11, 12, 14, 15, 16, 20].

The main result of the present paper is proved in Section 5. Namely,
we consider classes of ”quasi-contractive” symmetric operators T1 in a Krĕın
space (H, J) with

ν−[I − T [∗]
1 T1] := ν−(J(I − T [∗]

1 T1)) <∞ (1.1)

and we establish a solvability criterion and a description of all possible selfad-
joint extensions T of T1 (in the Krĕın space sense) which preserve the given

negative index ν−[I − T [∗]T ] = ν−[I − T [∗]
1 T1]. It should be pointed out that

in this more general setting the descriptions involve so-called link operator
LT which was introduced by Arsene, Constantintscu and Gheondea in [3]
(see also [2, 7, 8, 18]).

2. A completion problem for block operators in Krĕın spaces

By definition the modulus |C| of a closed operator C is the nonnegative
selfadjoint operator |C| = (C∗C)1/2. Every closed operator admits a polar
decomposition C = U |C|, where U is a (unique) partial isometry with the
initial space ran |C| and the final space ranC, cf. [13]. For a selfadjoint op-
erator H =

∫
R t dEt in a Hilbert space H the partial isometry U can be

identified with the signature operator, which can be taken to be unitary:
J = sign (H) =

∫
R sign (t) dEt, in which case one should define sign (t) = 1 if

t ≥ 0 and otherwise sign (t) = −1.
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Let H be a Hilbert space, and let JH be a signature operator in it, i.e.,
JH = J∗H = J−1H . We interpret the space H as a Krĕın space (H, JH) (see
[4, 6]) in which the indefinite scalar product is defined by the equality

[ϕ,ψ]H = (JHϕ,ψ)H.

Let us introduce a partial ordering for selfadjoint Krĕın space operators. For
selfadjoint operators A and B with the same domains A ≥J B if and only
if [(A − B)f, f ] ≥ 0 for all f ∈ domA. If not otherwise indicated the word
”smallest” means the smallest operator in the sense of this partial ordering.

Consider a bounded incomplete block operator

A0 =

(
A11 A12

A21 ∗

)(
(H1, J1)
(H2, J2)

)
→
(

(H1, J1)
(H2, J2)

)
(2.1)

in the Krĕın space H = (H1 ⊕ H2, J), where (H1, J1) and (H2, J2) are Krĕın

spaces with fundamental symmetries J1 and J2, and J =

(
J1 0
0 J2

)
.

Theorem 2.1. Let H = (H1 ⊕ H2, J) be an orthogonal decomposition of the
Krĕın space H and let A0 be an incomplete block operator of the form (2.1).

Assume that A11 = A
[∗]
11 and A21 = A

[∗]
12 are bounded, the numbers of neg-

ative squares of the quadratic form [A11f, f ] (f ∈ domA11) ν−[A11] :=
ν−(J1A11) = κ <∞, where κ ∈ Z+, and let us introduce J11 := sign (J1A11)
the (unitary) signature operator of J1A11. Then:

(i) There exists a completion A ∈ [(H, J)] of A0 with some operator A22 =

A
[∗]
22 ∈ [(H2, J2)] such that ν−[A] = ν−[A11] = κ if and only if

ran J1A12 ⊂ ran |A11|1/2.
(ii) In this case the operator S = |A11|[−1/2]J1A12, where |A11|[−1/2] denotes

the (generalized) Moore-Penrose inverse of |A11|1/2, is well defined and
S ∈ [(H2, J2), (H1, J1)]. Moreover, S[∗]J1J11S is the ”smallest” operator
in the solution set

A :=
{
A22 = A

[∗]
22 ∈ [(H2, J2)] : A = (Aij)

2
i,j=1 : ν−[A] = κ

}

and this solution set admits a description

A =
{
A22 ∈ [(H2, J2)] : A22 = J2(S∗J11S + Y ) = S[∗]J1J11S + J2Y,

where Y = Y ∗ ≥ 0
}
.

Proof. Let us introduce a block operator

Ã0 =

(
Ã11 Ã12

Ã21 ∗

)
=

(
J1A11 J1A12

J2A21 ∗

)
.

The blocks of this operator satisfy the identities Ã11 = Ã∗11, Ã∗21 = Ã12 and

ran J1A11 = ran Ã11 ⊂ ran |Ã11|1/2 = ran (Ã∗11Ã11)1/4

= ran (A∗11A11)1/4 = ran |A11|1/2.
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Then due to [5, Theorem 1] a description of all selfadjoint operator

completions of Ã0 admits representation Ã =

(
Ã11 Ã12

Ã21 Ã22

)
with Ã22 =

S̃∗J11S̃ + Y , where S̃ = |Ã11|[−1/2]Ã12 and Y = Y ∗ ≥ 0.

This yields description for the solutions of the completion problem. The

set of completions has the form A =

(
A11 A12

A21 A22

)
, where

A22 = J2Ã22 = J2A21J1|A11|[−1/2]J11|A11|[−1/2]J1A12 + J2Y

= J2S
∗J11S + J2Y = S[∗]J1J11S + J2Y. �

3. Some inertia formulas

Some simple inertia formulas are now recalled. The factorization H = B[∗]EB
clearly implies that ν±[H] ≤ ν±[E], cf. (1.1). If H1 and H2 are selfadjoint
operators in a Krĕın space, then

H1 +H2 =

(
I
I

)[∗](
H1 0
0 H2

)(
I
I

)

shows that ν±[H1 + H2] ≤ ν±[H1] + ν±[H2]. Consider the selfadjoint block
operator H ∈ [(H1, J1) ⊕ (H2, J2)], where Ji = J∗i = J−1i , (i = 1, 2) of the
form

H = H [∗] =

(
A B[∗]

B I

)
,

By applying the above mentioned inequalities shows that

ν±[A] ≤ ν±[A−B[∗]B] + ν±(J2). (3.1)

Assuming that ν−[A−B∗J2B] and ν−(J2) are finite, the question when ν−[A]
attains its maximum in (3.1), or equivalently, ν−[A − B∗J2B] ≥ ν−[A] −
ν−(J2) attains its minimum, turns out to be of particular interest. The next
result characterizes this situation as an application of Theorem 2.1. Recall
that if J1A = JA|A| is the polar decomposition of J1A, then one can in-
terpret HA = (ran J1A, JA) as a Krĕın space generated on ran J1A by the
fundamental symmetry JA = sign (J1A).

Theorem 3.1. Let A ∈ [(H1, J1)] be selfadjoint, B ∈ [(H1, J1), (H2, J2)], Ji =
J∗i = J−1i ∈ [Hi], (i = 1, 2), and assume that ν−[A], ν−(J2) < ∞. If the
equality

ν−[A] = ν−[A−B[∗]B] + ν−(J2)

holds, then ran J1B
[∗] ⊂ ran |A|1/2 and J1B

[∗] = |A|1/2K for a unique oper-
ator K ∈ [(H2, J2),HA] which is J-contractive: J2 −K∗JAK ≥ 0.

Conversely, if B[∗] = |A|1/2K for some J-contractive operator K ∈
[(H2, J2),HA], then the equality (3.1) is satisfied.
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Proof. Assume that (3.1) is satisfied. The factorization

H =

(
A B[∗]

B I

)
=

(
I B[∗]

0 I

)(
A−B[∗]B 0

0 I

)(
I 0
B I

)

shows that ν−[H] = ν−[A − B[∗]B] + ν−(J2), which combined with the
equality (3.1) gives ν−[H] = ν−[A]. Therefore, by Theorem 2.1 one has
ran J1B

[∗] ⊂ ran |A|1/2 and this is equivalent to the existence of a unique oper-
ator K ∈ [(H2, J2),HA] such that J1B

[∗] = |A|1/2K; i.e. K = |A|[−1/2]J1B[∗].
Furthermore, K [∗]J1JAK ≤J2 I by the minimality property of K [∗]J1JAK in
Theorem 2.1, in other words K is a J-contraction.

Converse, if J1B
[∗] = |A|1/2K for some J-contractive operator K ∈

[(H2, J2),HA], then clearly ran J1B
[∗] ⊂ ran |A|1/2. By Theorem 2.1 the com-

pletion problem for H0 has solutions with the minimal solution S[∗]J1JAS,
where

S = |A|[−1/2]J1B[∗] = |A|[−1/2]|A|1/2K = K.

Furthermore, by J-contractivity of K one has K [∗]J1JAK ≤J2 I, i.e. I is also
a solution and thus ν−[H] = ν−[A] or, equivalently, the equality (3.1) is
satisfied. �

4. A pair of completion problems in a Krĕın space

In this section we introduce and describe the solutions of a Krĕın space version
of a completion problem that was treated in [5].

Let (Hi, (Ji·, ·)) and (H, (J ·, ·)) be Krĕın spaces, where H = H1⊕H2,J =(
J1 0
0 J2

)
, and Ji are fundamental symmetries (i = 1, 2), let T11 = T

[∗]
11 ∈

[(H1, J1)] be an operator such that ν−(I − T ∗11T11) = κ < ∞. Denote T̃11 =

J1T11, then T̃11 = T̃ ∗11 in the Hilbert space H1. Rewrite ν−(I − T ∗11T11) =

ν−(I − T̃ 2
11). Denote

J+ = sign (I − T̃11), J− = sign (I + T̃11), and J11 = sign (I − T̃ 2
11),

and let κ+ = ν−(J+) and κ− = ν−(J−). It is easy to get that J11 = J−J+ =
J+J−. Moreover, there is an equality κ = κ− + κ+ (see [5, Lemma 5.1]).

We recall the results for the operator T̃11 from the paper [5] and after that
reformulate them for the operator T11. We recall completion problem and its
solutions that was investigated in a Hilbert space setting in [5]. The problem

concerns the existence and a description of selfadjoint operators T̃ such that

Ã+ = I + T̃ and Ã− = I − T̃ solve the corresponding completion problems

Ã0
± =

(
I ± T̃11 ±T̃ ∗21
±T̃21 ∗

)
, (4.1)

under minimal index conditions ν−(I + T̃ ) = ν−(I + T̃11), ν−(I − T̃ ) =

ν−(I − T̃11), respectively. The solution set is denoted by Ext T̃1,κ
(−1, 1).
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The next theorem gives a general solvability criterion for the completion
problem (4.1) and describes all solutions to this problem.

Theorem 4.1. ([5, Theorem 5]) Let T̃1 =

(
T̃11
T̃21

)
: H1 →

(
H1

H2

)
be a symmetric

operator with T̃11 = T̃ ∗11 ∈ [H1] and ν−(I − T̃ 2
11) = κ < ∞, and let J11 =

sign (I − T̃ 2
11). Then the completion problem for Ã0

± in (4.1) has a solution

I ± T̃ for some T̃ = T̃ ∗ with ν−(I − T̃ 2) = κ if and only if the following
condition is satisfied:

ν−(I − T̃ 2
11) = ν−(I − T̃ ∗1 T̃1). (4.2)

If this condition is satisfied then the following facts hold:

(i) The completion problems for Ã0
± in (4.1) have minimal solutions Ã±.

(ii) The operators T̃m := Ã+ − I and T̃M := I − Ã− ∈ Ext T̃1,κ
(−1, 1).

(iii) The operators T̃m and T̃M have the block form

T̃m =

(
T̃11 DT̃11

V ∗

V DT̃11
−I + V (I − T̃11)J11V

∗

)
,

T̃M =

(
T̃11 DT̃11

V ∗

V DT̃11
I − V (I + T̃11)J11V

∗

)
,

(4.3)

where DT̃11
:= |I − T̃ 2

11|1/2 and V is given by V := clos (T̃21D
[−1]
T̃11

).

(iv) The operators T̃m and T̃M are extremal extensions of T̃1:

T̃ ∈ Ext T̃1,κ
(−1, 1) iff T̃ = T̃ ∗ ∈ [H], T̃m ≤ T̃ ≤ T̃M .

(v) The operators T̃m and T̃M are connected via

(−T̃ )m = −T̃M , (−T̃ )M = −T̃m.
For what follows it is convenient to reformulate the above theorem in

a Krĕın space setting. Consider the Krĕın space (H, J) and a selfadjoint
operator T in this space. Now the problem concerns selfadjoint operators
A+ = I + T and A− = I − T in the Krĕın space (H, J) that solve the com-
pletion problems

A0
± =

(
I ± T11 ±T [∗]

21

±T21 ∗

)
, (4.4)

under minimal index conditions ν−(I+JT ) = ν−(I+J1T11) and ν−(I−JT ) =
ν−(I − J1T11), respectively. The set of solutions T to the problem (4.4) will
be denoted by Ext J2T1,κ(−1, 1).

Denote

T1 =

(
T11
T21

)
: (H1, J1)→

(
(H1, J1)
(H2, J2)

)
, (4.5)

so that T1 is symmetric (nondensely defined) operator in the Krĕın space

[(H1, J1)], i.e. T11 = T
[∗]
11 .
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Theorem 4.2. Let T1 be a symmetric operator in a Krĕın space sense as in

(4.5) with T11 = T
[∗]
11 ∈ [(H1, J1)] and ν−(I − T ∗11T11) = κ < ∞, and let

J = sign (I − T ∗11T11). Then the completion problems for A0
± in (4.4) have a

solution I ± T for some T = T [∗] with ν−(I − T ∗T ) = κ if and only if the
following condition is satisfied:

ν−(I − T ∗11T11) = ν−(I − T ∗1 T1). (4.6)

If this condition is satisfied then the following facts hold:

(i) The completion problems for A0
± in (4.4) have ”minimal”(J2-minimal)

solutions A±.
(ii) The operators Tm := A+ − J and TM := J −A− ∈ Ext J2T1,κ(−1, 1).
(iii) The operators Tm and TM have the block form

Tm =

(
T11 J1DT11V

∗

J2V DT11
−J2 + J2V (I − J1T11)J11V

∗

)
,

TM =

(
T11 J1DT11

V ∗

J2V DT11 J2 − J2V (I + J1T11)J11V
∗

)
,

(4.7)

where DT11 := |I−T ∗11T11|1/2 and V is given by V := clos (J2T21D
[−1]
T11

).
(iv) The operators Tm and TM are J2-extremal extensions of T1:

T ∈ Ext J2T1,κ(−1, 1) iff T = T [∗] ∈ [(H, J)], Tm ≤J2 T ≤J2 TM .
(v) The operators Tm and TM are connected via

(−T )m = −TM , (−T )M = −Tm.
Proof. The proof is obtained by systematic use of the equivalence that T is

a selfadjoint operator in a Krĕın space if and only if T̃ is a selfadjoint in a
Hilbert space. In particular, T gives solutions to the completion problems

(4.4) if and only if T̃ solves the completion problems (4.4). In view of

I − T ∗11T11 = I − T ∗11JJT11 = I − T̃ 2
11,

we are getting formula (4.6) from (4.2). Then formula (4.7) follows by multi-
plying the operators in (4.3) by the fundamental symmetry. �

5. Completion problem in a Pontryagin space

5.1. Defect operators and link operators

Let (H, (·, ·)) be a Hilbert space and let J be a symmetry in H, i.e. J = J∗ =
J−1, so that (H, (J ·, ·)), becomes a Pontryagin space. Then associate with
T ∈ [H] the corresponding defect and signature operators

DT = |J − T ∗JT |1/2, JT = sign (J − T ∗JT ), DT = ranDT ,

where the so-called defect subspace DT can be considered as a Pontryagin
space with the fundamental symmetry JT . Similar notations are used with
T ∗:

DT∗ = |J − TJT ∗|1/2, JT∗ = sign (J − TJT ∗), DT∗ = ranDT∗ .
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By definition JTD
2
T = J − T ∗JT and JTDT = DTJT with analogous identi-

ties for DT∗ and JT∗ . In addition,

(J − T ∗JT )JT ∗ = T ∗J(J − TJT ∗), (J − TJT ∗)JT = TJ(J − T ∗JT ).

Recall that T ∈ [H] is said to be a J-contraction if J − T ∗JT ≥ 0, i.e.
ν−(J − T ∗JT ) = 0. If, in addition, T ∗ is a J-contraction, T is termed as a
J-bicontraction.

For the following consideration an indefinite version of the commutation
relation of the form TDT = DT∗T is needed; these involve so-called link
operators introduced in [3, Section 4] (see also [5]).

Definition 5.1. There exist unique operators LT ∈ [DT ,DT∗ ] and LT∗ ∈
[DT∗ ,DT ] such that

DT∗LT = TJDT �DT , DTLT∗ = T ∗JDT∗�DT∗ ; (5.1)

in fact, LT = D
[−1]
T∗ TJDT �DT and LT∗ = D

[−1]
T T ∗JDT∗�DT∗ .

The following identities can be obtained with direct calculations; see [3,
Section 4]:

L∗TJT∗�DT∗ = JTLT∗ ;
(JT −DTJDT )�DT = L∗TJT∗LT ;

(JT∗ −DT∗JDT∗)�DT∗ = L∗T∗JTLT∗ .
(5.2)

Now let T be selfadjoint in Pontryagin space (H, J), i.e. T ∗ = JTJ .
Then connections between DT∗ and DT , JT∗ and JT , LT∗ and LT can be
established.

Lemma 5.2. Assume that T ∗ = JTJ . Then DT = |I−T 2|1/2 and the following
equalities hold:

DT∗ = JDTJ, (5.3)

in particular,

DT∗ = JDT and DT = JDT∗ ;

JT∗ = JJTJ ; (5.4)

LT∗ = JLTJ. (5.5)

Proof. The defect operator of T can be calculated by the formula

DT =
((
I − (T ∗)2

)
JJ(I − T 2)

)1/4
=
((
I − (T ∗)2

)
(I − T 2)

)1/4
.

Then

DT∗ =
(
J
(
I − (T ∗)2

)
(I − T 2)J

)1/4
= J

((
I − (T ∗)2

)
(I − T 2)

)1/4
J

= JDTJ

i.e. (5.3) holds. This implies

JDT∗ ⊂ DT and JDT ⊂ DT∗ .

Hence from the last two formulas we get

DT∗ = J(JDT∗) ⊂ JDT ⊂ DT∗
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and similarly

DT = J(JDT ) ⊂ JDT∗ ⊂ DT .

The formula

JTD
2
T = J − T ∗JT = J(J − TJT ∗)J = JJT∗D2

T∗J = JJT∗JD2
TJJ

= JJT∗JD2
T

yields the equation (5.4).

The relation (5.5) follows from

DTLT∗ = T ∗JDT∗�DT∗ = JTJDTJ�DT∗ = JDT∗LTJ = DTJLTJ. �

5.2. Lemmas on negative indices of certain block operators

The first two lemmas are of preparatory nature for the last two lemmas,
which are used for the proof of the main theorem.

Lemma 5.3. Let

(
J T
T J

)
:

(
H
H

)
→
(
H
H

)
be a selfadjoint operator in the

Hilbert space H2 = H⊕ H. Then

∣∣∣∣
(
J T
T J

)∣∣∣∣
1/2

= U

(
|J + T |1/2 0

0 |J − T |1/2
)
U∗,

where U = 1√
2

(
I I
I −I

)
is a unitary operator.

Proof. It is easy to check that

(
J T
T J

)
= U

(
J + T 0

0 J − T

)
U∗. (5.6)

Then by taking the modulus one gets
∣∣∣∣
(
J T
T J

)∣∣∣∣
2

=

((
J T
T J

)∗(
J T
T J

))
= U

(
|J + T |2 0

0 |J − T |2
)
U∗.

The last step is to extract the square roots (twice) from the both sides of the
equation:

∣∣∣∣
(
J T
T J

)∣∣∣∣
1/2

= U

(
|J + T |1/2 0

0 |J − T |1/2
)
U∗.

The right hand side can be written in this form because U is unitary. �

Lemma 5.4. Let T = T ∗ ∈ H be a selfadjoint operator in a Hilbert space H
and let J = J∗ = J−1 be a fundamental symmetry in H with ν−(J) < ∞.
Then

ν−(J − TJT ) + ν−(J) = ν−(J − T ) + ν−(J + T ). (5.7)

In particular, ν−(J − TJT ) <∞ if and only if ν−(J ± T ) <∞.
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Proof. Consider block operators

(
J T
T J

)
and

(
J + T 0

0 J − T

)
. Equality

(5.6) yields ν−

(
J T
T J

)
= ν−

(
J + T 0

0 J − T

)
. The negative index of

(
J + T 0

0 J − T

)
equals ν−(J − T ) + ν−(J + T ) and the negative index of

(
J T
T J

)
is easy to find by using the equality

(
J T
T J

)
=

(
I 0
TJ I

)(
J 0
0 J − TJT

)(
I JT
0 I

)
. (5.8)

Then one gets (5.7). �

Let (Hi, (Ji·, ·)) (i = 1, 2) and (H, (J ·, ·)) be Pontryagin spaces, where

H = H1⊕H2 and J =

(
J1 0
0 J2

)
. Consider an operator T11 = T

[∗]
11 ∈ [(H1, J1)]

such that ν−[I−T 2
11] = κ <∞; see (1.1). Denote T̃11 = J1T11, then T̃11 = T̃ ∗11

in the Hilbert space H1. Rewrite

ν−[I − T 2
11] = ν−(J1(I − T 2

11)) = ν−(J1 − T̃11J1T̃11)

= ν−((J1 − T̃11)J1(J1 + T̃11)).

Furthermore, denote

J+ = sign (J1(I − T11)) = sign (J1 − T̃11),

J− = sign (J1(I + T11)) = sign (J1 + T̃11),

J11 = sign (J1(I − T 2
11))

(5.9)

and let κ+ = ν−[I−T11] and κ− = ν−[I+T11]. Notice that |I∓T11| = |J1∓T̃11|
and one has polar decompositions

I ∓ T11 = J1J±|I ∓ T11|. (5.10)

Lemma 5.5. Let T11 = T
[∗]
11 ∈ [(H1, J1)] and T =

(
T11 T12
T21 T22

)
∈ [(H, J)]

be a selfadjoint extension of the operator T11 with ν−[I ± T11] < ∞ and
ν−(J) <∞. Then the following statements

(i) ν−[I ± T11] = ν−[I ± T ];

(ii) ν−[I − T 2] = ν−[I − T 2
11]− ν−(J2);

(iii) ran J1T
[∗]
21 ⊂ ran |I ± T11|1/2

are connected by the implications (i)⇔ (ii)⇒ (iii).

Proof. The Lemma can be formulated in an equivalent way for the Hilbert

space operators: the block operator T̃ = JT =

(
T̃11 T̃12
T̃21 T̃22

)
is a selfadjoint

extension of T̃11 = T̃ ∗11 ∈ [H1]. Then the following statements

(i’) ν−(J1 ± T̃11) = ν−(J ± T̃ )
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(ii’) ν−(J − T̃ JT̃ ) = ν−(J1 − T̃11J1T̃11)− ν−(J2);

(iii’) ran T̃12 ⊂ ran |J1 ± T̃11|1/2

are connected by the implications (i′)⇔ (ii′)⇒ (iii′).
Hence it’s sufficient to prove this form of the Lemma.

Let us prove the equivalence (i′)⇔ (ii′). Condition (ii’) is equivalent to

ν−

(
J1 T̃11
T̃11 J1

)
= ν−

(
J T̃

T̃ J

)
. (5.11)

Indeed, in view of (5.8)

ν−

(
J1 T̃11
T̃11 J1

)
= ν−(J1) + ν−(J1 − T̃11J1T̃11)

and

ν−

(
J T̃

T̃ J

)
= ν−(J) + ν−(J − T̃ JT̃ ) = ν−(J1) + ν−(J2) + ν−(J − T̃ JT̃ ).

By using Lemma 5.4, equality (5.11) is equivalent to

ν−(J1 − T̃11) + ν−(J1 + T̃11) = ν−(J − T̃ ) + ν−(J + T̃ ). (5.12)

Hence, (i′)⇒ (ii′).

Because ν−(J1 ± T̃11) ≤ ν−(J ± T̃ ), then (5.12) shows that (ii′)⇒ (i′).
Now we prove implication (ii′)⇒ (iii′);the arguments here will be useful

also for the proof of Lemma 5.6 below. Use a permutation to transform the
matrix in the right hand side of (5.11):

ν−

(
J T̃

T̃ J

)
= ν−




J1 0 T̃11 T̃12
0 J2 T̃21 T̃22
T̃11 T̃12 J1 0

T̃21 T̃22 0 J2


 = ν−




J1 T̃11 0 T̃12
T̃11 J1 T̃12 0

0 T̃21 J2 T̃22
T̃21 0 T̃22 J2


 .

Then condition (5.11) implies to the condition

ran

(
0 T̃12
T̃12 0

)
⊂ ran

∣∣∣∣∣

(
J1 T̃11
T̃11 J1

)∣∣∣∣∣

1/2

;

(see Theorem 2.1). By Lemma 5.3 the last inclusion can be rewritten as

ran

(
0 T̃12
T̃12 0

)
⊂ ranU

(
|J1 + T̃11|1/2 0

0 |J1 − T̃11|1/2

)
U∗,
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where U = 1√
2

(
I I
I −I

)
is a unitary operator. This inclusion is equivalent

to

ranU∗
(

0 T̃12
T̃12 0

)
U = ran

(
T̃12 0

0 −T̃12

)

⊂ ran

(
|J1 + T̃11|1/2 0

0 |J1 − T̃11|1/2

)

and clearly this is equivalent to condition (iii’).

Note that if T̃11 has a selfadjoint extension T̃ satisfying (i’). Then by
applying Theorem 2.1 (or [5, Theorem 1]) it yields (iii’). �

Lemma 5.6. Let T11 = T
[∗]
11 ∈ [(H1, J1)] be an operator and let

T1 =

(
T11
T21

)
: (H1, J1)→

(
(H1, J1)
(H2, J2)

)

be an extension of T11 with ν−[I −T 2
11] <∞, ν−(J1) <∞, and ν−(J2) <∞.

Then for the conditions

(i) ν−[I1 − T 2
11] = ν−[I1 − T [∗]

1 T1] + ν−(J2);

(ii) ran J1T
[∗]
21 ⊂ ran |I − T 2

11|1/2;

(iii) ran J1T
[∗]
21 ⊂ ran |I ± T11|1/2

the implications (i)⇒ (ii) and (i)⇒ (iii) hold.

Proof. First we prove that (i)⇒(ii). In fact, this follows from Theorem 3.1
by taking A = I − T 2

11 and B = T21.
A proof of (i)⇒(iii) is quite similar to the proof used in Lemma 5.5.

Statement (i) is equivalent the following equation:

ν−

(
J1 T̃11
T̃11 J1

)
= ν−

(
J T̃1
T̃ ∗1 J1

)
.

Indeed,

ν−

(
J1 T̃11
T̃11 J1

)
= ν−

(
J1 0

0 J1 − T̃11J1T̃11

)

= ν−(J1 − T̃11J1T̃11) + ν−(J1) <∞
and

ν−

(
J T̃1
T̃ ∗1 J1

)
= ν−

(
J 0

0 J1 − T̃ ∗1 JT̃1

)

= ν−(J1 − T̃11J1T̃11 − T̃ ∗21J2T̃21) + ν−(J1) + ν−(J2).

Due to (i) the right hand sides coincide and then the left hand sides coincide
as well.
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Now let us permutate the matrix in the latter equation.

ν−

(
J T̃1
T̃ ∗1 J1

)
= ν−



J1 0 T̃11
0 J2 T̃21
T̃11 T̃ ∗21 J1


 = ν−



J1 T̃11 0

T̃11 J1 T̃ ∗21
0 T̃21 J2


 .

It follows from [5, Theorem 1] that the condition (i) implies the condition

ran

(
0

T̃ ∗21

)
⊂ ran

∣∣∣∣∣

(
J1 T̃11
T̃11 J1

)∣∣∣∣∣

1/2

= ranU

(
|J1 + T̃11|1/2 0

0 |J1 − T̃11|1/2

)
U∗,

where U = 1√
2

(
I I
I −I

)
is a unitary operator (see Lemma 5.3). Then, equiv-

alently,

ran T̃ ∗21 ⊂ ran |J1 ± T̃11|1/2. �

5.3. Contractive extensions of contractions with minimal negative indices

Following to [5, 12, 14] we consider the problem of existence and a description

of selfadjoint operators T in the Pontryagin space

(
(H1, J1)
(H2, J2)

)
such that A+ =

I + T and A− = I − T solve the corresponding completion problems

A0
± =

(
I ± T11 ±T [∗]

21

±T21 ∗

)
, (5.13)

under minimal index conditions ν−[I + T ] = ν−[I + T11], ν−[I − T ] =
ν−[I−T11], respectively. Observe, that by Lemma 5.5 the two minimal index
conditions above are equivalent to single condition ν−[I−T 2] = ν−[I−T 2

11]−
ν−(J2).

It is clear from Theorem 2.1 that the conditions ran J1T
[∗]
21 ⊂ ran |I −

T11|1/2 and ran J1T
[∗]
21 ⊂ ran |I + T11|1/2 are necessary for the existence of

solutions; however as noted already in [5] they are not sufficient even in the
Hilbert space setting.

The next theorem gives a general solvability criterion for the completion
problem (5.13) and describes all solutions to this problem. As in the definite
case, there are minimal solutions A+ and A− which are connected to two
extreme selfadjoint extensions T of

T1 =

(
T11
T21

)
: (H1, J1)→

(
(H1, J1)
(H2, J2)

)
, (5.14)

now with finite negative index ν−[I − T 2] = ν−[I − T 2
11] − ν−(J2) > 0. The

set of solutions T to the problem (5.13) will be denoted by Ext T1,κ(−1, 1)J2 .

Theorem 5.7. Let T1 be a symmetric operator as in (5.14) with T11 = T
[∗]
11 ∈

[(H1, J1)] and ν−[I−T 2
11] = κ <∞, and let JT11 = sign (J1(I−T 2

11)). Then the
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completion problem for A0
± in (5.13) has a solution I ± T for some T = T [∗]

with ν−[I−T 2] = κ−ν−(J2) if and only if the following condition is satisfied:

ν−[I − T 2
11] = ν−[I − T [∗]

1 T1] + ν−(J2). (5.15)

If this condition is satisfied then the following facts hold:

(i) The completion problems for A0
± in (5.13) have ”minimal” solutions A±

(for the partial ordering introduced in the first section).
(ii) The operators Tm := A+ − I and TM := I −A− ∈ Ext T1,κ(−1, 1)J2 .
(iii) The operators Tm and TM have the block form

Tm =

(
T11 J1DT11

V ∗

J2V DT11
−I + J2V (I − L∗TJ1)J11V

∗

)
,

TM =

(
T11 J1DT11V

∗

J2V DT11
I − J2V (I + L∗TJ1)J11V

∗

)
,

(5.16)

where DT11
:= |I − T 2

11|1/2 and V is given by V := clos (J2T21D
[−1]
T11

).
(iv) The operators Tm and TM are ”extremal” extensions of T1:

T ∈ Ext T1,κ(−1, 1)J2 iff T = T [∗] ∈ [(H, J)], Tm ≤J2 T ≤J2 TM . (5.17)

(v) The operators Tm and TM are connected via

(−T )m = −TM , (−T )M = −Tm. (5.18)

Proof. It is easy to see by (3.1) that κ = ν−[I − T 2
11] ≤ ν−[I − T

[∗]
1 T1] +

ν−(J2) ≤ ν−[I − T 2] + ν−(J2). Hence the condition ν−[I − T 2] = κ− ν−(J2)
implies (5.15). The sufficiency of this condition is obtained when proving the
assertions (i)–(iii) below.

(i) If the condition (5.15) is satisfied then by using Lemma 5.6 one gets

the inclusions ran J1T
[∗]
21 ⊂ ran |I±T11|1/2, which by Theorem 2.1 means that

each of the completion problems, A0
± in (5.13), is solvable. It follows that the

operators

S− = |I + T11|[−1/2]J1T [∗]
21 , S+ = |I − T11|[−1/2]J1T [∗]

21 (5.19)

are well defined and they provide the minimal solutions A± to the completion
problems for A0

± in (5.13).

(ii) & (iii) By Lemma 5.6 the inclusion ran J1T
[∗]
21 ⊂ ran |I−T 2

11|1/2 holds.
This inclusion is equivalent to the existence of a (unique) bounded operator

V ∗ = D
[−1]
T11

J1T
[∗]
21 with ker V ⊃ ker DT11

, such that J1T
[∗]
21 = DT11

V ∗. The
operators Tm := A+ − I and TM := I −A− (see proof of (i)) by using (5.1),
(5.2), and 5.2 can be now rewritten as in (5.16). Indeed, observe that (see
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Theorem 2.1, (5.9), and (5.10))

J2S
∗
−J−S− = J2V DT11

|I + T11|[−1/2]J−|I + T11|[−1/2]DT11
V ∗

= J2V DT11
(J1(I + T11))[−1]DT11

V ∗

= J2V DT11
D

[−1]
T11

(I + L∗T11
J1)[−1]DT11

J1DT11
V ∗

= J2V (I + L∗T11
J1)[−1](J11 − L∗T11

JT∗
11
LT11

)V ∗

= J2V (I + L∗T11
J1)[−1](J11 − (L∗T11

J1)2J11)V ∗

= J2V (I + L∗T11
J1)[−1](I + L∗T11

J1)(I − L∗T11
J1)J11V

∗

= J2V (I − L∗T11
J1)J11V

∗,

where the third equality follows from (5.1) and the fourth from (5.2).
And similarly for

J2S
∗
+J+S+ = J2V DT11

|I − T11|[−1/2]J+|I − T11|[−1/2]DT11
V ∗

= J2V DT11
(J1(I − T11))[−1]DT11

V ∗

= J2V DT11
D

[−1]
T11

(I − L∗T11
J1)[−1]DT11

J1DT11
V ∗

= J2V (I − L∗T11
J1)[−1](J11 − L∗T11

JT∗
11
LT11

)V ∗

= J2V (I − L∗T11
J1)[−1](J11 − (L∗T11

J1)2J11)V ∗

= J2V (I − L∗T11
J1)[−1](I − L∗T11

J1)(I + L∗T11
J1)J11V

∗

= J2V (I + L∗T11
J1)J11V

∗,

which implies the representations for Tm and TM in (5.16). Clearly, Tm and
TM are selfadjoint extensions of T1, which satisfy the equalities

ν−[I + Tm] = κ−, ν−[I − TM ] = κ+.

Moreover, it follows from (5.16) that

TM − Tm =

(
0 0
0 2(I − J2V J11V ∗)

)
. (5.20)

Now the assumption (5.15) will be used again. Since ν−[I − T [∗]
1 T1] =

ν−[I − T 2
11] − ν−(J2) and T21 = J2V DT11

it follows from Theorem 3.1 that
V ∗ ∈ [H2,DT11

] is J-contractive: J2 − V J11V ∗ ≥ 0. Therefore, (5.20) shows
that TM ≥J2 Tm and I+TM ≥J2 I+Tm and hence, in addition to I+Tm, also
I+TM is a solution to the problem A0

+ and, in particular, ν−[I+TM ] = κ− =
ν−[I + Tm]. Similarly, I − TM ≤J2 I − Tm which implies that I − Tm is also
a solution to the problem A0

−, in particular, ν−[I − Tm] = κ+ = ν−[I − TM ].
Now by applying Lemma 5.5 we get

ν−[I − T 2
m] = κ− ν−(J2),

ν−[I − T 2
M ] = κ− ν−(J2).

Therefore, Tm, TM ∈ Ext T1,κ(−1, 1)J2 which in particular proves that the
condition (5.15) is sufficient for solvability of the completion problem (5.13).
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(iv) Observe, that T ∈ Ext T1,κ(−1, 1)J2 if and only if T = T [∗] ⊃ T1
and ν−[I ± T ] = κ∓. By Theorem 2.1 this is equivalent to

J2S
∗
−J−S− − I ≤J2 T22 ≤J2 I − J2S∗+J+S+. (5.21)

The inequalities (5.21) are equivalent to (5.17).
(v) The relations (5.18) follow from (5.19) and (5.16). �
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[15] Krĕın, M.G., On hermitian operators with defect indices (1, 1), Dokl. Akad.
Nauk SSSR, 43 (1944), 339–342.

68 Acta Wasaensia



Completion and extension of operators in Krĕın spaces. 17
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Boundary triplets and generalized resolvents of isometric operators
in a Pontryagin space

Dmytro V. Baidiuk

Presented by M. M. Malamud

Abstract. The notions of the boundary triplet of an isometric operator V in the Pontryagin space and the
corresponding function Weyl are introduced. Proper extensions of the isometric operator V, their spectra,
and canonical and generalized resolvents of the operator V are described.

Keywords. Pontryagin space, boundary triplets of an isometric operator, Weyl function, canonical and
generalized resolvents.

Introduction

The unitary operators in a space with indefinite metric and the problem of continuation of an
isometric operator V were studied in works [3, 9, 10, 12]. In the case where the defect subspaces of
an operator V are nondegenerate, the operator V is called standard, and the problem of its continu-
ation causes no difficulties. The description of the generalized resolvents of a standard operator was
given in [8]. For a nonstandard isometric operator, the description presented in [15, 16] is associated
with significant technical difficulties related to the necessity to consider unitary linear relations in a
Pontryagin space.

We propose another approach to the theory of the extensions of isometric operators in a Pontryagin
space that is based on the notion of the boundary triplet of an isometric operator. In the case of a
Hilbert space H, this notion was introduced and applied to the classical problems of analysis in works
by M. M. Malamud and V. I. Mogilevskii [13] and [14]. For a Pontryagin space, the definition of
boundary triplet is a partial case of the definition of boundary relation in [4]. The advantage of our
approach consists in that the auxiliary space in the definition of boundary triplet is a Hilbert one.
Thus, the problem of continuation of the isometric operator V in a Pontryagin space can be solved
simply, as in the case of a Hilbert space. Here, we introduce the notion of the Weyl function of an
isometric operator, which generalizes the appropriate definition from [13] and study its properties. This
will allow us to describe the properties of the extensions of the operator V, as well as the generalized
resolvents of an isometric operator in a Pontryagin space.

The author is grateful to his scientific supervisor, V. A. Derkach, for numerous discussions and
useful remarks and to M. M. Malamud and V. I. Mogilevskii for the possibility to read the manuscript
containing the proofs of all propositions in [13].
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1. Preliminary information

1.1. Linear relations

We recall some information about linear relations from [5, 7]. Let H1 and H2 be Hilbert spaces.
The linear relation (l.r.) T from H1 in H2 is a linear subspace in H1 × H2. If the linear operator
T is identified with its graph, then the set B(H1,H2) of linear bounded operators from H1 to H2 is
contained in the set of linear relations from H1 to H2. In what follows, we interpret the linear relation
T : H1 → H2 as a multivalued linear mapping from H1 to H2. If H := H1 = H2, we say that T is a
linear relation in H.

For a linear relation T : H1 → H2, we denote domT, kerT, ranT, and mulT as the domain
of definition, kernel, range, and multivalued part, respectively. The inverse relation T−1 is a linear
relation from H2 to H1 defined by the equality

T−1 =

{[
f ′

f

]
:

[
f
f ′

]
∈ T

}
.

The sum T + S of two linear relations T and S is defined in the form

T + S =

{[
f

g + h

]
:

[
f
g

]
∈ T,

[
f
h

]
∈ S

}
. (1.1)

Let H1 and H2 be Banach spaces. By B(H1,H2), we denote the set of all linear bounded operators
from H1 to H2; B(H) := B(H,H). We recall that the point λ ∈ C is called a point of the regular type
of an operator T ∈ B(H), if there exists cλ > 0 such that

‖(T − λI)f‖H ≥ cλ‖f‖H, f ∈ H.

If ran(T − λI) = H in this case, then λ is called a regular point of the operator T. By ρ(T ) (ρ̂(T )), we
denote the set of regular (regular type) points of the operator T.

1.2. Linear relations in Pontryagin spaces

Let H be a Hilbert space, and let jH be a signature operator in it, i.e., jH = j∗
H = j−1

H . We
interpret the space H as a Krein space (H, jH) (see [3]) in which the indefinite scalar product is
defined by the equality [ϕ,ψ]H = (jHϕ,ψ)H. The signature operator jH can be presented in the form
jH = P+ −P−, where P+ and P− are orthoprojectors in H. In the case where P− is finite-dimensional,
and dimP−H = κ, the Krein space (H, jH) is called a Pontryagin space with negative index κ, which
is denoted by ind−H = κ.

Consider two Pontryagin spaces (H1, jH1) and (H2, jH2) and a linear relation T from H1 to H2.
Then the adjoint linear relation T [∗] consists of pairs [ g2

g1 ] ∈ H2 × H1 such that

[f2, g2]H2 = [f1, g1]H1 , for all
[
f1

f2

]
∈ T.

If T ∗ is the l.r. adjoint to T considered as a l.r. from the Hilbert space H1 to the Hilbert space H2,
then T [∗] = jH1T

∗jH2 .
The l.r. T [∗] satisfies the equalities

(domT )[⊥] = mulT [∗], (ranT )[⊥] = kerT [∗], (1.2)

where the sign [⊥] means the orthogonality in a Pontryagin space.

514
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Definition 1.1. A linear relation T from a Pontryagin space (H1, jH1) to a Pontryagin space (H2, jH2)
is called isometric, if, for all

[ ϕ
ϕ′

]
∈ T, the equality

[ϕ′, ϕ′]H2 = [ϕ,ϕ]H1 (1.3)

holds. It is called a contractive (expanding) one, if equality (1.3) is replaced by an inequality with
the sign ≤ (≥). A linear relation from (H1, jH1) to (H2, jH2) is called unitary, if T−1 = T [∗]. These
properties are invariant relative to the closure. It is easy to obtain from (1.3) that a linear relation T
is isometric iff T−1 ⊂ T [∗].

As is known [3], the sets D \ ρ̂(T ) and De \ ρ̂(T ) for an isometric operator T in a Pontryagin space
with ind− H = κ consist of at most κ points, which belong to σp(T ).

The definition of unitary relation was first given in [17], where the following assertion was proved.

Proposition 1.1. If T is a unitary relation, then

1. domT is closed iff ranT is closed;

2. the equalities kerT = domT [⊥], mulT = ranT [⊥] hold.

Proposition 1.1 yields the following result.

Corollary 1.1. If T is a unitary relation in a Pontryagin space, then mulT 	= {0} if and only if
kerT 	= {0}. In this case, dim mulT = dim kerT.

2. Boundary triplets for an isometric operator in a Pontryagin space

2.1. Boundary triplets and description of the extensions of an isometric operator in
a Pontryagin space

In the case where H is a Hilbert space, the definition of the boundary triplet for an isometric
operator was introduced in [13]. We note that the notion of the boundary triplet of an isometric
operator, which will be introduced below in definition 2.1, is a partial case of the notion of the boundary
relation of an isometric operator in a Pontryagin space [4].

Let H be a Pontryagin space with negative index κ, and let the operator V : H → H be an isometry
in H. By N1 and N2, we denote two auxiliary Hilbert spaces.

Definition 2.1. The collection Π = {N1 ⊕ N2,Γ1,Γ2} is called the boundary triplet of an isometric
operator V, if

1) the following Green’s generalized identity holds:

[f ′, g′]H − [f, g]H = (Γ1f̂ ,Γ1ĝ)N1 − (Γ2f̂ ,Γ2ĝ)N2 , (2.1)

where f̂ =
[

f
f ′

]
, ĝ =

[ g
g′

]
∈ V −[∗];

2) the mapping Γ = (Γ1,Γ2)
T : V −[∗] → N1 ⊕ N2 is surjective.

For an isometric operator, it is convenient to define the defect subspace Nλ(V ) as follows:

Nλ(V ) := ker
(
I − λV [∗]

)
=

{
fλ :

[
fλ

λfλ

]
∈ V −[∗]

}
. (2.2)

515
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For λ ∈ ρ̂(V ), Nλ(V ) is a closed subspace in H [3].
We also set

N̂λ(V ) :=

{[
fλ

λfλ

]
: fλ ∈ Nλ(V )

}
. (2.3)

It follows from (2.2) that N̂λ(V ) ⊂ V −[∗].

Proposition 2.1. For any isometric operator V : H→ H, where H is a Pontryagin space Πκ, there
exists a boundary triplet.

Proof. Since V is an isometric operator, it is a neutral subspace of the space H2 with indefinite scalar
product

[f̂ , f̂ ]H2 := (JHf̂ , f̂)H2 = [f, f ]H − [f ′, f ′]H, where JH =

[
IH 0
0 −IH

]
.

Let us identify V with its graph in H2. Then the lineal V −[∗] that is orthogonal to V can be presented
in the form ([3, p. 44])

V −[∗] = V [�]D+[�]D−, (2.4)

where D+ and D− are some positive and negative subspaces in (H2, JH). For two arbitrary vectors f̂
and ĝ from V −[∗], we consider the decompositions corresponding to (2.4):

f̂ = f̂0 + û+ + û−, ĝ = ĝ0 + v̂+ + v̂−, where f̂0, ĝ0 ∈ V and û±, v̂± ∈ D±.

We define boundary operators as follows:

Γ1f̂ = û+,Γ2f̂ = v̂−.

The spaces (D+, JH) and (D−,−JH) are Hilbert ones. Then the collection Π = {D+ ⊕ D−,Γ1,Γ2} is
the boundary triplet for the isometric operator V, since

[f̂ , ĝ]H2 = [f̂0, ĝ0]H2 + [û+, v̂+]H2 + [û−, v̂−]H2

= (û+, v̂+)D+ − (û−, v̂−)D− = (Γ1f̂ ,Γ1ĝ)D+ − (Γ2f̂ ,Γ2ĝ)D− .

The surjectivity of the mapping Γ =
[

Γ1
Γ2

]
is obvious.

Let θ be a linear relation from N2 in N1. We define the extension Vθ of the operator V by the
equality

Vθ =

{
f̂ ∈ V −[∗] :

[
Γ2f̂

Γ1f̂

]
∈ θ

}
. (2.5)

The extension Vθ is, generally speaking, a linear relation from H to H.
We define two extensions V1 and V2 of the operator V :

Vi =
{
f̂ ∈ V −[∗] : Γif̂ = 0

}
, i = 1, 2. (2.6)

We note also that
V =

{
f̂ ∈ V −[∗] : Γ1f̂ = 0 and Γ2f̂ = 0

}
. (2.7)

We now define two sets of points:

Λ1 = {λ ∈ De : N̂λ(V ) ∩ V1 	= {0}} = σp(V1) ∩ De; (2.8)
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Λ2 = {λ ∈ D : N̂λ(V ) ∩ V2 	= {0}} = σp(V2) ∩ D. (2.9)

It will be proved in Lemma 2.1 that the extension V1 is contractive in H, whereas V2 is an expanding
operator in H. As is known ([3, p. 186]), the spectrum of the contractive operator V1 contains at most
κ points in De, and the spectrum of the expanding operator V2 contains at most κ points in D. Thus,
each of the sets Λ1 and Λ2 contains at most κ points, and sets D1 := De \ Λ1 and D2 := D \ Λ2 are
contained in the sets of regular points of these extensions.

Lemma 2.1. Let the collection Π = {N1 ⊕ N2,Γ1,Γ2} be the boundary triplet of the isometric operator
V. Then

1) the extension V1 is contractive in H, and V2 is expanding in H;

2) for all λ ∈ D1 = ρ(V1) ∩ De,

V −[∗] = V1 � N̂λ(V ); (2.10)

3) for all λ ∈ D2 = ρ(V2) ∩ D,
V −[∗] = V2 � N̂λ(V ). (2.11)

Proof. 1) For all vectors f̂ ∈ V1, identity (2.1) and the definition of the l.r. V1 (2.6) yield

[f ′, f ′] − [f, f ] = −
(
Γ2f̂ ,Γ2f̂

)
N2

≤ 0

i.e., [f ′, f ′] ≤ [f, f ].
In the same way, we obtain the inverse inequality for V2.
2) and 3). We now prove equality (2.10) (equality (2.11) can be proved analogously). For this

purpose, we set the inclusion V −[∗] ⊂ V1 � N̂λ(V ). Consider a pair of vectors
[

f
f ′

]
∈ V −[∗]. Let

f1 = (V1 − λ)−1(f ′ − λf) be a solution of the equation

f ′ − λf = f ′
1 − λf1, where

[
f1

f ′
1

]
∈ V1,

which is determined uniquely for λ ∈ D1. Then f ′ − f ′
1 = λ(f − f1), i.e.,

[
f−f1

λ(f−f1)

]
∈ V −[∗] and, hence,

f − f1 ∈ Nλ(V ). Since the inverse inclusion is obvious, equality (2.10) is proved.

The following theorem will give description of proper extensions of the operator V, i.e., such that
V ⊂ Vθ ⊂ V −[∗].

Theorem 2.1. Let the collections Π = {N1 ⊕ N2,Γ1,Γ2} be the boundary triplet for V, let θ be a
linear relation from N2 to N1, and let Vθ be the corresponding extension of the operator V. Then

1) the inclusion Vθ1 ⊂ Vθ2 is equivalent to the inclusion θ1 ⊂ θ2;

2) Vθ−∗ = V
−[∗]
θ ;

3) Vθ is a unitary extension of the operator V, iff θ is the graph of a unitary operator from N2 to
N1;

4) Vθ is an isometric extension of the operator V, iff θ is the graph of an isometric operator from
N2 to N1;
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5) Vθ is a coisometric extension of the operator V, iff θ is the graph of a coisometric operator from
N2 to N1;

6) Vθ is a contraction, iff θ is a contraction;

7) Vθ is an extension, iff θ is an extension.

Proof. Assertion 1) follows obviously from the definition of Vθ1 and Vθ2 .

2) We take
[

f
f ′

]
∈ Vθ and

[ g
g′

]
∈ V

−[∗]
θ . Then

[ g
g′

]
∈ V

[∗]
θ . From (2.1), we obtain

0 = [f ′, g′] − [f, g] =
(
Γ1f̂ ,Γ1ĝ

)
N1

−
(
Γ2f̂ ,Γ2ĝ

)
N2

Since
[

Γ2f̂

Γ1f̂

]
∈ θ, we have

[
Γ1ĝ
Γ2ĝ

]
∈ θ∗ or

[
Γ2ĝ
Γ1ĝ

]
∈ θ−∗, which means ĝ ∈ Vθ−∗ . Hence, we show that

V
−[∗]
θ ⊂ Vθ−∗ .

The inverse assertion can be proved by inversion of the above reasoning.

3) Let V
−[∗]
θ = Vθ, i.e., let Vθ be a unitary extension of the operator V. Using the first assertion of

this lemma, we obtain θ−∗ = θ. Conversely, we set θ−∗ = θ and, by the first assertion of the lemma,

arrive at V
−[∗]
θ = Vθ.

4) and 5) are proved analogously. Assume that Vθ is a coisometry, i.e., V −1
θ ⊃ V

[∗]
θ . Then, by virtue

of item 2), Vθ−∗ = V
−[∗]
θ ⊂ Vθ. By virtue of assertion 1), we obtain θ−∗ ⊂ θ, i.e., θ is a coisometry.

6) Let Vθ be a contraction. Then,for f̂ =
[

f
f ′

]
∈ Vθ, formula (2.1) yields

0 ≥ [f ′, f ′] − [f, f ] =
(
Γ1f̂ ,Γ1f̂

)
N1

−
(
Γ2f̂ ,Γ2f̂

)
N2

.

We obtain (Γ1f̂ ,Γ1ĝ)N1 ≤ (Γ2f̂ ,Γ2ĝ)N2 . This means that θ is a contraction.

7) is proved analogously to 6).

Remark 2.1. In assertions (3)–(6), the extension Vθ can be a a linear relation with nontrivial multi-
valued part, whereas θ is the graph of a univalent operator.

Example 2.1. Let H = C2, J =
[

1 0
0 −1

]
. We take V = {0}. Then, for

V −[∗] =

{{[
x1

x2

]
,

[
x′

1

x′
2

]}
: x1, x2, x

′
1, x

′
2 ∈ C

}
,

expansion (2.4), where

D+ =

{[
x1

0

]
,

[
0
x′

2

]}
, D− =

{[
0
x2

]
,

[
x′

1

0

]}
,

is valid. In this case, the boundary operators can be defined by the equalities

Γ1x̂ = P+x̂ =

{[
x1

0

]
,

[
0
x′

2

]}
∼

[
x1

x′
2

]
∈ C2,

Γ2x̂ = P−x̂ =

{[
0
x2

]
,

[
x′

1

0

]}
∼

[
x′

1

x2

]
∈ C2.
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As a unitary extension Ṽ of the operator V, we take the linear relation

Ṽ =

{{[
x1

x1

]
,

[
x′

1

x′
1

]}
: x1, x

′
1 ∈ C

}

for which dom Ṽ and ran Ṽ are neutral subspaces. Then, for all x̂ ∈ V̂ , we obtain Γ1x̂ = Γ2x̂ =
[

x1

x′
1

]
.

Hence, θ = {{Γ2x̂,Γ1x̂} : x̂ ∈ Ṽ } is the identity operator from C2 in C2, whereas Ṽ is not an operator.

2.2. γ-field and Weyl function

The notion of the Weyl function of an isometric operator V in a Hilbert space, which allows one to
describe the analytic properties of extensions of the operator V, was introduced in [13]. In this section,
we will generalize this notion to the case of the isometric operator V in a Pontryagin space.

Lemma 2.2. Let Π = {N1 ⊕ N2,Γ1,Γ2} be the boundary triplet for V, and let V1 and V2 be the
extensions of the isometric operator V that are defined in (2.6). Then the mappings Γj � N̂λ(V ) :

N̂λ(V ) → Nj , j = 1, 2, are bounded and boundedly invertible for λ ∈ Dj .
In this case, the operator-functions

γj(λ) := π1γ̂j(λ) = π1

(
Γj � N̂λ(V )

)−1
(2.12)

satisfy the equality

γj(λ) = (I + (λ− μ)(Vj − λ)−1)γj(μ), for λ, μ ∈ Dj , j = 1, 2. (2.13)

The operator-functions γj(·) are called γ-fields for the l.r. V −[∗].

Proof. First, we will show that the mapping Γ : V −[∗] →
[

N1
N2

]
is closed. Let f̂n =

[
fn

f ′
n

]
∈ V −[∗]

and f̂n → 0. Then Γf̂n =
[

Γ1f̂n

Γ2f̂n

]
→

[
h1
h2

]
=: h. From (2.1), we obtain (h1,Γ1ĝ) − (h2,Γ2ĝ) = 0. The

surjectivity of Γ implies that there exists a vector g ∈ H such that Γĝ =
[

h1
h2

]
. From the previous

equality, we obtain ‖h1‖2 + ‖h2‖2 = 0; hence, h = 0.
Since dom Γ = V −[∗], the operator Γ is bounded by the Banach theorem of closed graph. Hence,

Γ1 and Γ2 are bounded as well.
By virtue of equality (2.10) and the surjectivity of Γ, the mapping Γ1 � N̂λ(V ) : N̂λ(V ) → N1 acts

on all N1. From (2.1), we obtain the following estimate:

‖Γ1f̂λ‖2
N1

= ‖Γ2f̂λ‖2
N2

+ (|λ|2 − 1)[fλ, fλ] ≥ (|λ|2 − 1)[fλ, fλ], where λ ∈ D1, f̂λ =

[
fλ

λfλ

]
∈ N̂λ(V ).

Hence, Γ1 � N̂λ(V ) is boundedly invertible.
Analogously, we can prove the bounded invertibility of Γ2 � N̂λ(V ). Hence, γj(λ) for λ ∈ Dj

(j = 1, 2) are defined properly.
We now prove identity (2.13). For definiteness, we take j = 1 and will prove that

γ1(λ) = (I + (λ− μ)(V1 − λ)−1)γ1(μ), for λ, μ ∈ D1.

Consider the vector gμ = γ1(μ)h1 ∈ Nμ(V ), where h1 ∈ N1. Then there exists the vector h2 ∈ N2 such

that Γ
[ gμ

μgμ

]
=

[
h1
h2

]
. We set

fλ = gμ + (λ− μ)(V1 − λ)−1gμ.
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Then

f̂λ =

[
gμ

μgμ

]
+ (λ− μ)

[
(V1 − λ)−1gμ(

I + λ(V1 − λ)−1
)
gμ

]
. (2.14)

In this equality,

ĝμ =

[
gμ

μgμ

]
∈ N̂μ(V ) ⊂ V −[∗],

[
(V1 − λ)−1

I + λ(V1 − λ)−1

]
gμ ∈ V1 ⊂ V −[∗].

Thus, f̂λ ∈ N̂λ(V ).

Below, we will use an equality that follows from (2.6):

Γ

[
(V1 − λ)−1gμ(

I + λ(V1 − λ)−1
)
gμ

]
=

[
0
h′

2

]
. (2.15)

Equalities (2.14) and (2.15) yield

Γf̂λ = Γ

[
gμ

μgμ

]
+ (λ− μ)Γ

[
(V1 − λ)−1gμ(

I + λ(V1 − λ)−1
)
gμ

]
=

[
h1

h2 + (λ− μ)h′
2

]
.

Hence, fλ = γ1(λ)h1. This proves (2.13).

The previous lemma implies that it is possible to define the operator-functions M1(·) and M2(·):

M1(λ)Γ1 � Nλ(V ) = Γ2 � Nλ(V ), λ ∈ D1; (2.16)

M2(λ)Γ2 � Nλ(V ) = Γ1 � Nλ(V ), λ ∈ D2. (2.17)

It follows from definition (2.12) of γ1(·) and γ2(·) that M1(λ) and M2(λ) are defined properly, and

M1(λ) := Γ2γ̂1(λ), λ ∈ D1; (2.18)

M2(λ) := Γ1γ̂2(λ), λ ∈ D2. (2.19)

In what follows, we need the Shur class S and the generalized Shur class Sκ of functions. Their
definition is given below.

Definition 2.2. A function s(λ) defined and holomorphic in a domain hs ⊂ D belongs to the class

Sκ(N1,N2), if the kernel Kμ(λ) = 1−s(μ)∗s(λ)
1−λμ has κ negative squares, i.e., for all λ1, . . . , λn ∈ hs and

u1, . . . , un ∈ N1, the matrix ((Kλj (λi)ui, uj))
n
i,j=1 has at most κ negative eigenvalues. For at least one

such choice, it has exactly κ negative eigenvalues.

In particular, an [N1,N2]-valued function s(·) belongs to the class S(N1,N2), if the kernel Kμ(λ)
is positive definite everywhere in D. As is known, the last condition is equivalent to that s(·) is
holomorphic in D, and ‖s(λ)‖ ≤ 1 for all λ ∈ D.

Proposition 2.2. The operator-function M2(·) belongs to Sκ(N2,N1).

Proof. Let λj be some points from D2, j = 1, . . . , n. We denote hj := Γ2f̂λj . Then Γ1f̂λj = M2(λ)hj .

From (2.1) for f̂λj and f̂λk
, we have

(λjλk − 1)[fλj , fλk
] = (M2(λj)hj ,M2(λk)hk)N1 − (hj , hk)N2 .
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We now construct the quadratic form

n∑

j,k=1

(
I −M2(λk)

∗M2(λj)

1 − λjλk

hj , hk

)

N2

ξjξk =
n∑

j,k=1

[fλj , fλk
]ξjξk.

Since H has the negative index κ, and since the reduced quadratic form has at most κ negative squares
and exactly κ negative squares for some collection fλj , we have M2(·) ∈ Sκ.

Proposition 2.3. The following relations hold:

−I −M1(μ)∗M1(λ)

1 − λμ
= γ1(μ)∗γ1(λ), λ, μ ∈ D1; (2.20)

I −M2(μ)∗M2(λ)

1 − λμ
= γ2(μ)∗γ2(λ), λ, μ ∈ D2; (2.21)

M1(μ)∗ −M2(λ)

1 − λμ
= γ1(μ)∗γ2(λ), λ ∈ D2, μ ∈ D1; (2.22)

M1(λ) −M2(μ)∗

1 − λμ
= γ2(μ)∗γ1(λ), λ ∈ D1, μ ∈ D2. (2.23)

Proof. We now prove (2.20) and (2.22), because (2.21) is proved analogously to (2.20), and (2.23) is
a consequence of (2.22).

Let λ, μ ∈ D1 and h1, h
′
1 ∈ N1. Then formula (2.18) yields

Γ

[
γ1(λ)h1

λγ1(λ)h1

]
=

[
h1

M1(λ)h1

]
and Γ

[
γ1(μ)h′

1

μγ1(μ)h′
1

]
=

[
h′

1

M1(μ)h′
1

]
.

Using these identities and setting f̂ = γ̂1(λ) and ĝ = γ̂1(μ) in (2.1), we obtain

(λμ− 1)[γ1(λ)h1, γ1(μ)h′
1] = (h1, h

′
1)N1 − (M1(λ)h1,M1(μ)h′

1)N2

or
(λμ− 1)[γ1(μ)∗γ1(λ)h1, h

′
1] = ((I −M1(μ)∗M1(λ))h1, h

′
1)N1 .

From whence, we obtain equality (2.20).
Let λ ∈ D2, μ ∈ D1, and let h1 ∈ N1 and h2 ∈ N2. Then formulas (2.18) and (2.19) yield

Γ

[
γ2(λ)h2

λγ2(λ)h2

]
=

[
M2(λ)h2

h2

]
and Γ

[
γ1(μ)h1

μγ1(μ)h1

]
=

[
h1

M1(μ)h1

]
.

From (2.1), we obtain

(λμ− 1)[γ2(λ)h2, γ1(μ)h1] = (M2(λ)h2, h1)N1 − (h2,M1(μ)h1)N2 .

This yields identity (2.22).

Definition 2.3. The isometric operator V in H is called simple, if

span{Nλ(V ) : λ ∈ ρ̂(V )} = H.

If the isometric operator V in a Pontryagin space H is simple, then D ∪ De ∈ ρ̂(V ) (see [3]).
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Theorem 2.2. Let Π = {N1 ⊕ N2,Γ1,Γ2} be the boundary triplet of a simple isometric operator V,
and let M1(·) and M2(·) be the functions defined by equalities (2.16) and (2.17). Then the set of poles
of the operator-function M1(·) in De coincides with Λ1, and the set of poles of the operator-function
M2(·) in D coincides with Λ2.

Proof. It follows from (2.20) that if λ0 is a pole of the operator-function M1(·), then it is a singular
point for γ1(·), i.e., λ0 ∈ Λ1.

Let now λ0 ∈ Λ1. Then

(V1 − λ)−1 =
A−n

(λ− λ0)n
+ · · · +

A−1

λ− λ0
+ · · ·

Let us assume that M1(λ) is holomorphic at the point λ0. Then the equality

−I −M1(μ)∗M1(λ)

1 − λμ
= γ1(μ)∗ (

I + (λ− μ′)(V1 − λ)−1
)
γ1(μ

′)

implies that [A−iγ1(μ
′)h′

1, γ1(μ)h1] = 0 for all i = 1, . . . , n, μ, μ′ ∈ D1 and any h1, h
′
1 ∈ N1.

The equality
M1(λ) −M2(μ)∗

1 − λμ
= γ2(μ)∗ (

I + (λ− μ′)(V1 − λ)−1
)
γ1(μ

′)

yields [A−iγ1(μ
′)h1, γ2(μ)h2] = 0 for all μ′ ∈ D1, μ ∈ D2 and any h1 ∈ N1, h2 ∈ N2. By virtue of the

primality of the operator V,

span{Nλ(V ) : λ ∈ D1 ∪ D2} = H.
Hence, all A−i = 0 for i = 1, . . . , n. But this contradicts the assumption that λ0 ∈ Λ1.
The second assertion of this theorem is proved analogously.

Theorem 2.3. Under the conditions of the previous theorem, the equality

M1(λ) = M2(1/λ)∗ =: M#
2 (λ) for λ ∈ D1 (2.24)

holds.

Proof. Let us take λ ∈ De\(Λ1 ∪ Λ#
2 ), where Λ#

2 is the set symmetric to the set Λ2 relative to the
unit disc. Setting μ = 1/λ in (2.23), we obtain (2.24). Equality (2.24) for λ ∈ D1 can be obtained

by the analytic continuation of the function M#
2 (λ) = M1(λ) into the points λ ∈ D1 ∩ Λ#

2 and by the
application of Theorem 2.2.

Remark 2.2. By virtue of the holomorphy of M1(·) in D1 and M2(·) in D2, the identity proved in
Theorem 2.3 implies that if λ0 is a pole of M1(·), then 1/λ0 is a pole of M2(·). The same is true for
the poles of M2(·). Thus, the poles of M1(·) and M2(·) are symmetric relative to the unit disc. Hence,

Λ1 = Λ#
2 .

Definition 2.4. The operator-function defined by the equality

M(λ) =

{
M1(λ), λ ∈ D1,

M2(λ), λ ∈ D2,
(2.25)

is called the Weyl function of the operator V, which corresponds to the boundary triplet Π = {N1 ⊕
N2,Γ1,Γ2}.
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Lemma 2.3. Let V : H → H be an isometric operator, and let the collection Π = {N1 ⊕ N2,Γ1,Γ2}
be the boundary triplet of the isometric operator V. Then

1) for λ ∈ D1, the equality

Γ2

[
(V1 − λ)−1

I + λ(V1 − λ)−1

]
= − 1

λ
γ2

(
1

λ

)∗
(2.26)

holds;

2) for λ ∈ D2, the equality

Γ1

[
(V2 − λ)−1

I + λ(V2 − λ)−1

]
=

1

λ
γ1

(
1

λ

)∗
(2.27)

holds.

Proof. 1) Take λ ∈ D1, μ ∈ D2, and h1 ∈ N1. Formula (2.13) yields

γ̂1 (λ)h1 − γ̂1 (μ)h1 = (λ− μ)

[
(V1 − λ)−1

I + λ(V1 − λ)−1

]
γ1 (μ)h1.

Applying the operator Γ2 to both sides of the equality, we obtain

M1 (λ)h1 −M1 (μ)h1 = (λ− μ)Γ2

[
(V1 − λ)−1

I + λ(V1 − λ)−1

]
γ1 (μ)h1.

In this formula, we replace M1(λ) by M2

(
1
λ

)∗
. In view of formula (2.23), the left-hand side can be

written as follows:

M2

(
1

λ

)∗
h1 −M1(μ)∗h1 = −

(
1 − μ

λ

)
γ2

(
1

λ

)∗
γ1(μ)h1.

Equating the right-hand sides of two last formulas, we obtain

Γ2

[
(V1 − λ)−1

I + λ(V1 − λ)−1

]
= − 1

λ
γ2

(
1

λ

)∗
.

2) Take λ ∈ D2, μ ∈ D1 and h2 ∈ N2. Substituting λ and μ in formula (2.13), we write it in the
form

γ̂2(λ)h2 − γ̂2(μ)h2 = (λ− μ)

[
(V2 − λ)−1

I + λ(V2 − λ)−1

]
γ2 (μ)h2.

Applying the operator Γ1 to both sides of the equality, we obtain

M2(λ)h2 −M2(μ)h2 = (λ− μ)Γ1

[
(V2 − λ)−1

I + λ(V2 − λ)−1

]
γ2 (μ)h2.

Replacing M2(λ) in this formula by M1

(
1/λ

)∗
, we have

M1

(
1/λ

)∗ −M2(μ)h2 = (λ− μ)Γ1

[
(V2 − λ)−1

I + λ(V2 − λ)−1

]
γ2 (μ)h2.

In view of formula (2.22), we write the left-hand side as

M1

(
1/λ

)∗ −M2(μ)h2 =
(
1 − μ

λ

)
γ1

(
1

λ

)∗
γ2(μ)h2.

Comparing the right-hand sides of two last formulas, we obtain formula (2.27).
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2.3. Description of the resolvents of extensions of an isometric operator in
a Pontryagin space

Let θ be some closed l.r. from N2 in N1. Then there exists a Hilbert space H and bounded operators
Ki : H → Ni, i = 1, 2, such that

θ =

{[
K2h
K1h

]
, h ∈ H

}
. (2.28)

Below, we present two theorems, describing the spectrum and the resolvents of extensions Vθ of the
operator V. The first theorem gives such a description for the points λ lying outside the unit disc D,
i.e., λ ∈ D1 ⊂ De.

Theorem 2.4. Let V : H → H be an isometric operator, let the collection Π = {N1 ⊕ N2,Γ1,Γ2}
be the boundary triplet of the isometric operator V, and let θ be the l.r. defined in (2.28). Then, for
λ ∈ D1, the following assertions are valid:

1) λ ∈ σp(Vθ) iff 0 ∈ σp(θ
−1 −M1(λ)). In this case,

ker (θ−1 −M1(λ)) = Γ1

[
f
f ′

]
, where

[
f
f ′

]
∈ V −[∗] and f ′ = λf.

2) λ ∈ ρ(Vθ) ∩ D1 iff 0 ∈ ρ(θ−1 −M1(λ)); for λ ∈ ρ(Vθ) ∩ D1, the resolvent of the extension Vθ can
be determined from the formula

(Vθ − λ)−1 = (V1 − λ)−1 − λ−1γ1(λ)
(
θ−1 −M1(λ)

)−1
γ2(λ)#. (2.29)

Proof. 1) Let λ ∈ σp(Vθ), and let fλ be an eigenvector Vθ corresponding to the eigenvalue λ. Hence,[
fλ
λfλ

]
∈ Vθ, fλ ∈ Nλ(V ), and M1(λ)Γ1f̂λ = Γ2f̂λ. Since fλ ∈ domVθ, we have

[
Γ1f̂λ

Γ2f̂λ

]
∈ θ−1. Hence,

(θ−1 −M1(λ))Γ1f̂λ = 0.

Conversely, if (θ−1 − M1(λ))h1 = 0 for some h1 ∈ N1, then the vector fλ := γ1(λ)h1 ∈ Nλ(V ),
and, hence, fλ ∈ σp(Vθ).

2) Assume that 0 ∈ ρ(θ−1 −M1(λ)),
[

f
f ′

]
∈ Vθ and g ∈ H. Lemma 2.1 implies that the solution of

the equation

f ′ − λf = g (2.30)

can be presented in the form

[
f
f ′

]
=

[
f1

f ′
1

]
+

[
fλ

λfλ

]
, where f̂1 ∈ V1, f̂λ ∈ N̂λ(V ). (2.31)

Then formula (2.30) yields

f1 = (V1 − λ)−1g. (2.32)

Applying the operators Γ1 and Γ2 to the equality (2.31), we obtain

Γ1f̂ = Γ1f̂λ

Γ2f̂ = Γ2

[
(V1 − λ)−1g

g + λ(V1 − λ)−1g

]
+ Γ2f̂λ = − 1

λ
γ2

(
1

λ

)∗
g +M1(λ)Γ1f̂ .
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Since 0 ∈ ρ(θ−1 −M1(λ)), the previous equality yields

Γ1f̂λ = − 1

λ

(
θ−1 −M1(λ)

)−1
γ2

(
1

λ

)∗
g,

fλ = − 1

λ
γ1(λ)

(
θ−1 −M1(λ)

)−1
γ2

(
1

λ

)∗
g. (2.33)

Equalities (2.31), (2.32), and (2.33) yield equality (2.29).

Conversely, let λ ∈ ρ(Vθ). By virtue of item 1), to prove the membership 0 ∈ ρ(θ−1 −M1(λ)), it is
sufficient to show that ran(θ−1 −M1(λ)) = N2. Indeed, by virtue of the surjectivity of the mapping
Γ, there exists the vector f̂1 ∈ V −[∗] for any h2 ∈ N2 such that Γf̂1 =

[
0
h2

]
. Since Γ1f̂1 = 0, we

have f̂1 ∈ V1. We set f = (Vθ − λ)−1(f ′
1 − λf1). Then fλ := f − f1 ∈ Nλ(V ) and f = f1 + fλ. Since[

Γ1f̂λ

Γ2f̂λ

]
=

[
Γ1f̂

Γ2f̂λ

]
∈ θ−1, we obtain

Γ2f̂ −M1(λ)Γ1f̂λ = Γ2(f̂ − f̂λ = Γ2f̂1 = h2.

This proves the equality ran
(
θ−1 −M1(λ)

)
= N2 and also the inclusion 0 ∈ ρ

(
θ−1 −M1(λ)

)
.

Corollary 2.1. If we write the l.r. θ in terms of the operators K1 and K2 (see (2.28)), then λ ∈ ρ(Vθ)
iff 0 ∈ ρ(K2 −M1(λ)K1). Formula (2.29) takes the form

(Vθ − λ)−1 = (V1 − λ)−1 − λ−1γ1(λ)K1 (K2 −M1(λ)K1)
−1 γ2(λ)#. (2.34)

Corollary 2.2. Let θ be the graph of a unitary operator U from N2 to N1. Then, for λ ∈ D1 such
that 0 ∈ ρ(I − M1(λ)U), we obtain λ ∈ ρ(Vθ), and the resolvent of an extension Vθ can be found by
the formula

(Vθ − λ)−1 = (V1 − λ)−1 − 1

λ
γ1(λ)U (I −M1(λ)U)−1 γ2

(
1

λ

)∗
. (2.35)

The following result for the points λ inside the unit disc D can be proved analogously.

Theorem 2.5. Let V : H → H be an isometric operator, let the collection Π = {N1 ⊕ N2,Γ1,Γ2}
be the boundary triplet of an isometric operator V, and let θ be the l.r. defined in (2.28), Then, for
λ ∈ D2, the following assertions are true:

1) λ ∈ σp(Vθ) iff 0 ∈ σp(θ−M2(λ)); for λ ∈ σp(Vθ), ker (θ−M2(λ)) = Γ2

[
f
f ′

]
, where

[
f
f ′

]
∈ V −[∗]

and f ′ = λf.

2) λ ∈ ρ(Vθ) iff 0 ∈ ρ(θ−M2(λ)); for λ ∈ ρ(Vθ)∩D2, the resolvent of an extension Vθ can be found
by the formula

(Vθ − λ)−1 = (V2 − λ)−1 + λ−1γ2(λ) (θ −M2(λ))−1 γ1(λ)#. (2.36)

Corollary 2.3. If the l.r. θ is written in terms of the operators K1 and K2 (see (2.28)), then formula
(2.36) takes the form

(Vθ − λ)−1 = (V2 − λ)−1 + λ−1γ2(λ)K2 (K1 −M2(λ)K2)
−1 γ1(λ)#. (2.37)
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3. Description of the generalized resolvents of an isometric operator in
a Pontryagin space

Definition 3.1 ([12]). The operator-function Rλ holomorphic in a neighborhood O of the point ζ ∈ D1

is called the generalized resolvent of an isometric operator V : H → H, if there exist a Pontryagin
space H̃ ⊃ H and the unitary extension Ṽ : H̃ → H̃ of the operator V such that ζ ∈ ρ(Ṽ ), and if the
equality

Rλ = PH
(
Ṽ − λ

)−1 � H, λ ∈ ρ(Ṽ ) ∩ O (3.1)

in which PH is the orthoprojector from H̃ onto H holds.

Definition 3.2. A unitary extension Ṽ of an operator V is called minimal, if H
Ṽ

= H̃, where

H
Ṽ

:= span
{

H + (Ṽ − λ)−1H : λ ∈ ρ(Ṽ )
}
. (3.2)

Proposition 3.1. Let a unitary extension Ṽ of the operator V be not minimal, ρ(Ṽ ) 	= ∅, and
ind− H̃ = ind− H = κ.

Then the following decomposition is valid:

H̃ = H1 ⊕ H2 and Ṽ = Ṽ1 ⊕ Ṽ2. (3.3)

Here, H2 = H
Ṽ
, Ṽ2 is the minimal extension of the operator V, and Ṽ1 is a unitary operator in the

Hilbert space H1 ⊂ H⊥
Ṽ
. In this case,

PH(Ṽ − λ)−1 � H = PH(Ṽ2 − λ)−1 � H. (3.4)

Proof. Since H ⊂ H
Ṽ

⊂ H̃ and ind− H = ind− H̃ = κ, we have ind− H
Ṽ

= κ. Hence, H
Ṽ

is not
degenerate.

We now show that H
Ṽ

and H⊥
Ṽ

are invariant for Ṽ . Let us take different λ1 and λ2 from ρ(Ṽ ). Let

h ∈ H. Then u := (Ṽ − λ2)
−1h ∈ H

Ṽ
. Let the operator (Ṽ − λ1)

−1 act on this vector:

(Ṽ − λ1)
−1(Ṽ − λ2)

−1h =
1

λ1 − λ2

(
(Ṽ − λ1)

−1 − (Ṽ − λ2)
−1

)
h ∈ H

Ṽ
.

The case where λ1 and λ2 coincide with each other follows from the previous one, if λ1 tends to λ2.

Consider now the vectors v ∈ H⊥
Ṽ

and u ∈ H
Ṽ
. Then

[
(Ṽ − λ)−1v, u

]
H̃

=
[
v, (Ṽ ∗ − λ)−1u

]
H̃

=

[
v,

1

λ

(
−I + (I − λṼ )−1

)
u

]

H̃
= 0.

Here, we use the fact that, for the unitary operator Ṽ , the inclusion λ ∈ ρ(Ṽ ) yields the inclusion
1
λ

∈ ρ(Ṽ ).

Thus, H̃ = H⊥
Ṽ

⊕ H
Ṽ

and Ṽ =
[

Ṽ1 0

0 Ṽ2

]
, where Ṽ2 is the minimal extension of the operator V in

H
Ṽ
.

The equality

PH(I − λṼ )−1 � H = PH(I − λṼ2)
−1 � H

follows from representation (3.3).
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Theorem 3.1. Let V be an isometry in a Pontryagin space H with negative index κ, let Π = {N1 ⊕
N2,Γ1,Γ2} be the boundary triplet for V, Vi = ker Γi, and let γi(·), Mi(·), i = 1, 2, be the corresponding
γ-fields and the Weyl functions.

Let H̃ = H⊥ ⊕ H be a Pontryagin space ind− H̃ = κ. We define the projectors π1 and π2 from
H⊥ × H⊥ onto the first and second components in H⊥ × H⊥,

π1ĥ = h, π2ĥ = h′, where ĥ =

[
h
h′

]
∈ (H⊥)2.

Then

1) the adjoint l.r. for V −1 in the space H̃ takes the form

V
−[∗]

H̃ = V −[∗] ⊕ (H⊥)2; (3.5)

2) the operators

Γ̃1 =

[
π2 0
0 Γ1

]
∈ [(H⊥)2 ⊕ V −[∗],H⊥ ⊕ N1], (3.6)

Γ̃2 =

[
π1 0
0 Γ2

]
∈ [(H⊥)2 ⊕ V −[∗],H⊥ ⊕ N2] (3.7)

are the boundary operators in the boundary triplet Π̃ = {(H⊥ ⊕N1)⊕ (H⊥ ⊕N2), Γ̃1, Γ̃2} for the
isometry V in H̃.
Moreover,

Ṽ1(= ker Γ̃1) = V1 ⊕ (H⊥ ⊕ {0}), Ṽ2(= ker Γ̃2) = V2 ⊕ ({0} ⊕ H⊥), (3.8)

and the corresponding γ-fields and the Weyl functions for the boundary triplet Π̃ take the form

γ̃1(λ) =

[
1
λIH⊥ 0

0 γ1(λ)

]
, λ ∈ D1

γ̃2(λ) =

[
IH⊥ 0
0 γ2(λ)

]
, λ ∈ D2

(3.9)

M̃1(λ) =

[
1
λIH⊥ 0

0 M1(λ)

]
, λ ∈ D1

M̃2(λ) =

[
λIH⊥ 0

0 M2(λ)

]
, λ ∈ D2

(3.10)

Proof. The first part of the theorem is obvious, and the second one can be verified directly.

We recall the basic notions of the theory of unitary colligations (see [1,6]). Let H be a Pontryagin
space, let N2 and N1 be Hilbert spaces, and let U =

(
T F
G H

)
be a unitary operator from H ⊕ N2 to

H⊕N1. Then the quadruple Δ = (H,N2,N1, U) is called a unitary colligation. The spaces H,N2, and
N1 are called, respectively, the space of states, space of inputs, and space of outputs, and the operator
U is called the connecting operator of the colligation Δ.

The colligation Δ is called simple, if there exists no subspace in the space H reducing U. The
operator-function

Θ(λ) = H + λG(I − λT )−1F : N2 → N1 (λ−1 ∈ ρ(T )) (3.11)
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is called the characteristic function of a colligation Δ (or the scattering matrix of the unitary operator
U relative to the channel spaces N2 and N1 in the case where N2,N1,H are Hilbert ones [2]). The
characteristic function characterizes a simple unitary colligation to within a unitary equivalence.

Theorem 3.2. Let V be an isometric operator in H, let H̃ = H ⊕ H⊥ be a Pontryagin space with
negative index ind− H̃ = ind− H, and let Π̃ be the boundary triplet constructed in Theorem 3.1.

1) Any unitary extension Ṽ ∈ B(H̃) of the operator V can be presented in the form V = Vθ := Γ̃−1θ,
where θ is the graph of the unitary operator

U =

[
T F
G H

]
:

[
H⊥

N2

]
→

[
H⊥

N1

]
. (3.12)

2) A unitary extension Ṽ ∈ B(H̃) of the operator V is minimal iff the unitary colligation Δ =
(H⊥,N2,N1;T, F,G,H) is simple.

3) If Θ(λ) is the characteristic function of the unitary colligation Δ = (H⊥,N2,N1;T, F,G,H),
then the generalized resolvent of the operator V, which corresponds to the extension Ṽ , takes the
following form for λ ∈ ρ(Ṽ ) ∩ D1:

Rλ = Rλ(V1) − 1

λ
γ1(λ)Θ

(
1

λ

)(
I −M1(λ)Θ

(
1

λ

))−1

γ2(λ)#; (3.13)

but if λ ∈ ρ(Ṽ ) ∩ D2, it takes the form

Rλ = Rλ(V2) + λ−1γ2(λ)Θ(λ)∗ (
I −M2(λ)Θ(λ)∗)−1

γ1(λ)#. (3.14)

Proof. 1) The assertion of this item of the theorem is a consequence of Theorem 2.1.3.
2) Let the colligation Δ = (H⊥,N2,N1;T, F,G,H) be not simple, i.e., H⊥ = H1 ⊕ H2. Then the

unitary operator U takes the form U =
[

U1 0
0 U2

]
:

[
H1
H2

]
→

[
H1
H2

]
. In view of operators Γ̃1 and Γ̃2

(see formulas (3.6) and (3.7)), we can conclude that they act from
[

H1
H2

]
to H1 as projectors. Hence,

Ṽ = Vθ will have a reducing subspace, namely, H1. Thus, Ṽ is not the minimal extension of the
operator V in H̃. The proof of this assertion in the reverse direction is analogous.

3) Using formulas (2.34) and (2.37) for the resolvents of extensions of the operator V, we now find
the resolvent of the unitary extension Ṽ = Ṽθ : H̃ → H̃, where

θ =

{{[
h⊥

h

]
, U

[
h⊥

h

]}
,

[
h⊥

h

]
∈

[
H⊥

N2

]}
.

Then with regard for (3.1), we obtain

Rλg = PHRλ(Ṽ1)g − 1

λ
PHγ̃1(λ)U

(
I − M̃1(λ)U

)−1
γ̃2

(
1

λ

)∗
g

= Rλ(V1)g − 1

λ
γ1(λ)PN1U

(
I − M̃1(λ)U

)−1
γ2

(
1

λ

)∗
g,

λ ∈ ρ(Ũθ) ∩ D1, g ∈ H; (3.15)
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Rλg = PHRλ(Ṽ2)g +
1

λ
PHγ̃2(λ)U∗

(
I − M̃2(λ)U∗

)−1
γ̃1

(
1

λ

)∗
g

= Rλ(V2)g +
1

λ
γ2(λ)PN1U

∗
(
I − M̃2(λ)U∗

)−1
γ1

(
1

λ

)∗
g,

λ ∈ ρ(Ũθ) ∩ D2, g ∈ H. (3.16)

The second formula includes U∗, since

θ =

{[
h
Uh

]
, h ∈

[
N1

H⊥

]}
=

{[
U∗g
g

]
, g ∈

[
N2

H⊥

]}

by virtue of the unitarity of the operator U.
Using the Frobenius formula for the inverse block matrix, we transform the first formula as

(
I − M̃1(λ)U

)−1
=

(
I −

[
1
λIH⊥ 0

0 M1(λ)

] [
T F
G H

])−1

=

[
I − 1

λT − 1
λF

M1(λ)G I −M1(λ)H

]−1

=

[
∗ 1

λ(I − 1
λT )−1FΦ( 1

λ)
∗ Φ( 1

λ)

]
, (3.17)

where ∗ stands for the blocks, which are insignificant, and

Φ

(
1

λ

)
:=

(
I −M1(λ)H − 1

λ
M1(λ)G

(
I − 1

λ
T

)−1

F

)−1

=

(
I −M1(λ)Θ

(
1

λ

))−1

. (3.18)

Substituting (3.17) and (3.18) in (3.15), we obtain

PN1U
(
I − M̃1(λ)U

)−1
�N2=

1

λ
G(I − 1

λ
T )−1FΦ(

1

λ
) +HΦ(

1

λ
)

= Θ

(
1

λ

)
Φ(

1

λ
) = Θ

(
1

λ

) (
I −M1(λ)Θ

(
1

λ

))−1

.

The second formula is transformed similarly to the form

PN2U
∗
(
I − M̃2(λ)U∗

)−1
�N1= N(λ) (I −M2(λ)N(λ))−1 ,

where

N(λ) = H∗ + λF ∗ (I − λT ∗)−1G∗ =
(
H + λG

(
I − λT

)−1
F

)∗
= Θ(λ)∗. (3.19)

Corollary 3.1. Under the conditions of Theorem 3.2, formulas (3.13) and (3.14) establish the bijective
correspondence between the set of generalized resolvents of the operator V and the set of operator-
functions Θ ∈ Sκ(N2,N1).

Proof. Let Rλ be the generalized resolvent of the operator V, which admits the representation Rλ =
PH(Ṽ − λ)−1 � H, where Ṽ is the minimal extension of the operator V in the space H̃. Then, by
virtue of Theorem 3.2, the operator Ṽ admits the representation Ṽ = Γ̃−1θ, where θ is the graph of
the unitary operator U from (3.12). In this case, the unitary colligation is simple. The characteristic
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function Θ(·) of this colligation belongs to the class Sκ(N2,N1). By virtue of Theorem 3.2.3, formulas
(3.13) and (3.14) are valid.

Conversely, if Θ(·) ∈ Sκ(N2,N1), then there exists a simple unitary colligation Δ that is uniquely
determined to within a unitary equivalence and is such that the characteristic function of this colliga-
tion coincides with Θ(·). Let us consider the boundary triplet from Theorem 3.1. The extension Ṽ is
minimal. By virtue of Theorem 3.2.3, the generalized resolvent corresponding to Ṽ , can be found by
formulas (3.13) and (3.14).
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16. O. Nitz, “Generalized resolvents of isometric linear relations in Pontryagin space, 2: Krein–Langer formula,”
Meth. Funct. Anal. Topol., 6, No. 3, 72–96 (2000).

530

88 Acta Wasaensia



17. Yu. L. Shmul’yan, “Theory of linear relations and spaces with indefinite metric,” Funkts. Anal. Pril., 10,
No. 1, 67–72 (1976).

Translated from Russian by V. V. Kukhtin

Dmytro V. Baidiuk
Donetsk National University,
24, Universitetskaya Str., Donetsk 83001, Ukraine
E-Mail: baydyuk@gmail.com

531

Acta Wasaensia 89





ISSN 0001-4346, Mathematical Notes, 2013, Vol. 94, No. 6, pp. 958–962. © Pleiades Publishing, Ltd., 2013.
Original Russian Text © D. V. Baidiuk, 2013, published in Matematicheskie Zametki, 2013, Vol. 94, No. 6, pp. 940–943.

SHORT
COMMUNICATIONS

Description of Scattering Matrices
of Unitary Extensions of Isometric Operators

in Pontryagin Space

D. V. Baidiuk*

Donetsk National University, Donetsk, Ukraine
Received January 28, 2013

DOI: 10.1134/S0001434613110333

Keywords: unitary extension of an isometric operator, scattering matrix, Pontryagin space,
resolvent matrix, Nevanlinna-Pick problem, Weyl function, bitangent interpolation problem,
Schur class.

1. INTRODUCTION

Many problems in analysis, such as the Nevanlinna–Pick problem, the moment problem, etc., can
be reduced to the study of some symmetric operator A in a Hilbert space H . Here, an important role for
describing L-resolvents is played by Krein’s formula [1] for a symmetric operator A with finite deficiency
indices and extended in [2] to the case of operators with infinite deficiency indices. An explicit formula
for the L-resolvent matrix of a symmetric operator A in terms of boundary triplets was established in [3]
(for the case of symmetric operators in Pontryagin space, see [4]).

In the case of an isometric operator V in Hilbert space, the analog of Krein’s formula for L-resolvents
is the formula describing the scattering matrices of unitary extensions of an operator V ; it was derived
by Arov and Grossman in [5]. The Arov–Grossman formula served as a basis for constructing a theory
of abstract interpolation in the papers of Katsnel’son, Kheifets, and Yuditskii (see [6]), including the
majority of the well-known classical interpolation problems.

In the papers of Malamud and Mogilevskii [7], [8], the boundary operator method was extended to
the case of isometric operators and applied to the problem of describing the generalized resolvents of an
isometric operator V in Hilbert space. In [9], this method was further developed to the case of isometric
operators acting in the Pontryagin spaces Πκ, and it served as a basis for describing the generalized
resolvents of isometric operators in the spaces Πκ.

In the present paper, we use these results to describe the scattering matrices of isometric operators V
in Πκ and obtain explicit formula for the L-resolvent matrices of the operator V . In what follows, this
formula will be applied to the description of solutions of an indefinite abstract interpolation problem and,
in particular, to such problems as the Nevanlinna–Pick problem and the bitangent interpolation problem
for the generalized Schur classes.

2. BOUNDARY TRIPLETS AND THE WEYL FUNCTION

Let (H, [ · , · ]) be a Pontryagin space with negative index κ = ind− H (see [10]), let N1, N2, and
L1 ⊆ L2 be Hilbert spaces, and let B(N2,N1) be the set of bounded linear operators from N2 to N1. Let
V be an isometric operator from H ⊕ L2 to H ⊕ L1, and let V [∗] be the adjoint linear relation from H ⊕ L1

to H ⊕ L2. For brevity, we shall write V −[∗] := (V [∗])−1. Note that

gr V =

{⎡
⎣ f

Vf

⎤
⎦ : f ∈ domV

}
⊂ V −[∗].

*E-mail: baydyuk@gmail.com
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SCATTERING MATRICES OF UNITARY EXTENSIONS OF ISOMETRIC OPERATORS 959

Denote

D = {λ ∈ C : ‖λ‖ < 1}, De = {λ ∈ C : ‖λ‖ > 1}, T = {λ : ‖λ‖ = 1},
and S(N2,N1) is the Schur class of contraction, analytic (in D) operator functions with values
in B(N2,N1)

Definition 1. The set Π = {N1 ⊕ N2,Γ1,Γ2} will be called the boundary triplet of an isometric
operator V if

1) the mapping Γ = (Γ1,Γ2)
T : V −[∗] → N1 ⊕ N2 is surjective;

2) the generalized Green identity

[f ′, g′]H⊕L1 − [f, g]H⊕L2 = (Γ1f̂ ,Γ1ĝ)N1 − (Γ2f̂ ,Γ2ĝ)N2 (1)

holds for all

f̂ =

⎡
⎣f

f ′

⎤
⎦ , ĝ =

⎡
⎣g

g′

⎤
⎦ ∈ V −[∗].

Remark 1. If {N1 ⊕ N2,Γ1,Γ2} is a boundary triplet for the isometry V and dim N1 = dim L1,
dim N2 = dim L2, then there exist unitary operators Xi : Ni → Li, i = 1, 2 such that the set

{L1 ⊕ L2,X1Γ1,X2Γ2}
is a boundary triplet for V . In this case, a boundary triplet for V can be chosen so that N1 = L1 and
N2 = L2.

Proposition 1. If ι : H ⊕ L1 ↪→ H ⊕ L2 is an embedding operator and Ṽf := ιVf is an isometry
from H ⊕ L2 to H ⊕ L2, then

Ṽ −[∗] = V −[∗] �
{⎡

⎣0

u

⎤
⎦ : u ∈ L2 � L1

}
.

Proposition 2. If {N1 ⊕ N2,Γ1,Γ2} is a boundary triplet for V : H ⊕ L2 → H ⊕ L1, then the set
{Ñ1 ⊕ N2, Γ̃1, Γ̃2}, where Ñ1 = N1 ⊕ (L2 � L1),

Γ̃1

(
f̂ +

⎡
⎣0

u

⎤
⎦
)

=

⎡
⎣Γ1f̂

u

⎤
⎦ , Γ̃2

(
f̂ +

⎡
⎣0

u

⎤
⎦

)
= Γ2f̂ , f̂ ∈ Ṽ −[∗], u ∈ L2 � L1,

constitutes a boundary triplet for Ṽ : H ⊕ L2 → H ⊕ L2.

For an isometric operator Ṽ , the defect subspaces Nλ(Ṽ ) are defined as follows:

Nλ(Ṽ ) :=

{
fλ :

⎡
⎣ fλ

λfλ

⎤
⎦ ∈ Ṽ −[∗]

}
. (2)

In the case of a Hilbert space H, the notion of boundary triplet of an isometric operator V was
introduced in [7] and, in the case of a Pontryagin space, in [11].
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3. REPRESENTATION THEORY OF ISOMETRIC OPERATORS
Let PH and PL1 be the orthogonal projections onto H and L1, and let ρ̂(PHV ) be the set of points of

regular type of the operator PHV (see [13]).

Definition 2. We shall write λ ∈ ρ(V,L2) if 1 ∈ ρ̂(λPHV ) and

(I − λPHV ) dom V � L2 = H ⊕ L2, (3)

and λ ∈ ρ(V −1,L2) if 1 ∈ ρ̂(λPHV −1) and

(I − λPHV −1) ran V � L1 = H ⊕ L1. (4)

We shall write λ ∈ ρV (L2,L1) if λ ∈ ρ(V,L2), and λ ∈ ρ(V −1,L1).

Definition 3. For λ ∈ ρ(V,L2), by PL2(λ) we denote the skew projection onto L2 in the decomposi-
tion (3) and introduce the operators

QL2(λ) := PL2 Ṽ (I − λPHV )−1(I − PL2(λ)) : H ⊕ L2 → L2,

QL1(λ) := PL1QL2(λ).

We also define

P̂L2(λ)[∗] =

⎡
⎣ PL2(λ)[∗]

λ(PL2(λ)[∗] − IL2)

⎤
⎦ , Q̂Li

(λ)[∗] =

⎡
⎣ QLi

(λ)[∗]

λQLi
(λ)[∗] + ILi

⎤
⎦ , for i = 1, 2. (5)

Further,

Nλ(Ṽ ) = (PL2(λ)[∗] + λQL2(λ)[∗])L2.

Theorem 1. For λ ∈ ρV (L2,L1), the following decompositions are valid:

V −[∗] = gr V � P̂L2(λ)[∗]L2 � QL1(λ)[∗]L1. (6)

Ṽ −[∗] = gr Ṽ � P̂L2(λ)[∗]L2 � QL2(λ)[∗]L2. (7)

For λ ∈ ρ(V,L2), we define the operators

G(λ) :=

⎡
⎣ QL1(λ)

IL2 − PL2(λ)

⎤
⎦ , G̃(λ) :=

⎡
⎣ QL2(λ)

IL2 − PL2(λ)

⎤
⎦ , (8)

V(λ) :=

⎡
⎣ Q̂L1(λ)

−P̂L2(λ)

⎤
⎦ , Ṽ(λ) :=

⎡
⎣ Q̂L2(λ)

−P̂L2(λ)

⎤
⎦ . (9)

Theorem 2. Let Π = {N1 ⊕ N2,Γ1,Γ2} be a boundary triplet for V : H ⊕ L2 → H ⊕ L1, and let
Π̃ = {Ñ1 ⊕ N2, Γ̃1, Γ̃2} be a boundary triplet for Ṽ = ιV : H ⊕ L2 → H ⊕ L2. Then, for λ, μ ∈
ρV (L2,L1), the operator functions

W (λ) := (ΓV(λ)[∗])∗, W̃ (λ) := (Γ̃Ṽ(λ)[∗])∗ (10)

satisfy the identities

JL − W (λ)JNW (μ)∗ = (1 − λμ)G(λ)G(μ)[∗], (11)

J
eL

− W̃ (λ)J
eN
W̃ (μ)∗ = (1 − λμ)G̃(λ)G̃(μ)[∗], (12)

where

JL =

⎡
⎣IL1 0

0 −IL2

⎤
⎦ , JN =

⎡
⎣IN1 0

0 −IN2

⎤
⎦ ,
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J
eL

=

⎡
⎣IL2 0

0 −IL2

⎤
⎦ , J

eN
=

⎡
⎣IN2 0

0 −IN2

⎤
⎦ .

Definition 4. The operator functions W ( · ) and W̃ ( · ) satisfying identities (11) and (12) are called the
resolvent matrices of the operators V and Ṽ , respectively.

Thus, W ( · ) and W̃ ( · ) defined by formulas (10) are the resolvent matrices for the operators V and Ṽ ,
respectively. Further,

W ( · ) = PL1⊕L2W̃ ( · ) � N1 ⊕ N2.

Remark 2. If Π = {N1 ⊕ N2,Γ1,Γ2} is a boundary triplet such that N1 = L1, N2 = L2, and
a ∈ T ∩ ρV (L2,L1) (
= ∅), then, setting W (a) = I and using (11), we obtain

W (λ) = I − (1 − λa)G(λ)G(a)[∗]JL, λ ∈ ρV (L2,L1). (13)

Definition 5. Let U : H̃ ⊕ L2 → H̃ ⊕ L1 be the unitary operator which is the extension of an iso-
metric operator V : H ⊕ L2 → H ⊕ L1, and let H̃ be a Pontryagin space containing H such that
ind− H̃ = ind− H. The operator function s(λ) : L2 → L1 defined in D \ (σp(U) ∪ σp(UPH))−1 by the
equality

s(λ) = PL1(I − λUPH)−1U � L2, (14)

is called the scattering matrix of the unitary extension U of an isometric operator V (see [5], [11], [9]).

Theorem 3. Let 0 ∈ ρV (L2,L1), and let

W (λ) =

⎡
⎣w11(λ) w12(λ)

w21(λ) w22(λ)

⎤
⎦

be the matrix function defined by relation (10). Then the set of scattering matrices of various
unitary extensions of the operator V is described by the formula

s(λ) = (w12(λ) + w11(λ)ε(λ))(w22(λ) + w21(λ)ε(λ))−1, λ ∈ ρV (L2,L1), (15)

where the parameter ε( · ) belongs to the Schur class S(N2,N1) and satisfies the condition
0 ∈ ρ(w22(0) + w21(0)ε(0)).

Formula (15) follows from the similar scattering matrix s̃(λ) for Ṽ :

s̃(λ) = (w̃12(λ) + w̃11(λ)ε̃(λ))(w̃22(λ) + w̃21(λ)ε̃(λ))−1, λ ∈ ρV (L2,L1), (16)

where the parameter ε̃( · ) ranges over the set S(N2,N2) and the w̃ij( · ) are the elements of the resolvent

matrix W̃ ( · ) for Ṽ . In proving formula (16), the formula for the generalized resolvents of the isometry Ṽ

proved in [9] is used. Namely, it is this fact that makes it necessary to consider the extended operator Ṽ ,
for which the defect subspaces and spectrum is well defined, in contrast to the operator V .

Remark 3. In the case of a Hilbert space, formula (15) was obtained in [5]. In [8], this formula, as well as
Theorems 1–3, was obtained by the boundary operator method. In the indefinite case, the representation
theory of standard isometric operators (i.e., with nondegenerate dom V ) was studied in [13], [14]. Note
that, in our approach, first, we are able to construct the representation theory of nonstandard isometric
operators in Πκ and, second, simplify some results from [13], in particular, formula (11) by using another
definition of the operator functions PL2(λ) and QL2(λ). For symmetric operators, the corresponding
results (Theorems 1–3) were obtained in [3] and [5].
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